952 resultados para CHARGE-TRANSFER PROCESSES
Resumo:
The optical-absorption spectrum of a cationic Ag0 atom in a KCl crystal has been studied theoretically by means of a series of cluster models of increasing size. Excitation energies have been determined by means of a multiconfigurational self-consistent field procedure followed by a second-order perturbation correlation treatment. Moreover results obtained within the density-functional framework are also reported. The calculations confirm the assignment of bands I and IV to transitions of the Ag-5s electron into delocalized states with mainly K-4s,4p character. Bands II and III have been assigned to internal transitions on the Ag atom, which correspond to the atomic Ag-4d to Ag-5s transition. We also determine the lowest charge transfer (CT) excitation energy and confirm the assignment of band VI to such a transition. The study of the variation of the CT excitation energy with the Ag-Cl distance R gives additional support to a large displacement of the Cl ions due to the presence of the Ag0 impurity. Moreover, from the present results, it is predicted that on passing to NaCl:Ag0 the CT onset would be out of the optical range while the 5s-5p transition would undergo a redshift of 0.3 eV. These conclusions, which underline the different character of involved orbitals, are consistent with experimental findings. The existence of a CT transition in the optical range for an atom inside an ionic host is explained by a simple model, which also accounts for the differences with the more common 3d systems. The present study sheds also some light on the R dependence of the s2-sp transitions due to s2 ions like Tl+.
Resumo:
The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).
Resumo:
In this thesis, the magnetic field control of convection instabilities and heat and mass transfer processesin magnetic fluids have been investigated by numerical simulations and theoretical considerations. Simulation models based on finite element and finite volume methods have been developed. In addition to standard conservation equations, themagnetic field inside the simulation domain is calculated from Maxwell equations and the necessary terms to take into account for the magnetic body force and magnetic dissipation have been added to the equations governing the fluid motion.Numerical simulations of magnetic fluid convection near the threshold supportedexperimental observations qualitatively. Near the onset of convection the competitive action of thermal and concentration density gradients leads to mostly spatiotemporally chaotic convection with oscillatory and travelling wave regimes, previously observed in binary mixtures and nematic liquid crystals. In many applications of magnetic fluids, the heat and mass transfer processes including the effects of external magnetic fields are of great importance. In addition to magnetic fluids, the concepts and the simulation models used in this study may be applied also to the studies of convective instabilities in ordinary fluids as well as in other binary mixtures and complex fluids.
Resumo:
Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian. Tests with some unequivocal gas phase maxima of simple molecules (benzene, furfural, acetaldehyde, hexyl alcohol, methyl amine, 2,5 dimethyl 2,4 hexadiene, and ethyl sulfide) ratify the general quality of this approach in comparison with other methods. The calculation of large systems as porphine in gas phase and a model of the complete retinal binding pocket in rhodopsin with 622 basis functions on 280 atoms at the quantum mechanical level show reliability leading to a resulting first allowed transition in 483 nm, very similar to the known experimental value of 500 nm of "dark state." In this very important case, our model gives a central role in this excitation to a charge transfer from the neighboring Glu(-) counterion to the retinaldehyde polyene chain. Tests with gas phase maxima of some important molecules corroborate the reliability of CNDOL/2 Hamiltonians.
Resumo:
Certain biopolymers are capable of forming physically cross-linked gels in aqueous medium, stabilized by forces such as Coulombic, charge transfer, hydrogen bonding, dipole-dipole, van der Waals, and hydrophobic interactions. The mathematical description of these physical networks are difficult, but should contribute to a better understanding of the gelling process. The Clark and Ross-Murphy model was applied to experimental data for agarose-guar gum mixed systems, in which only agarose is the gelling polysaccharide. A computational routine based on the statistical maximum likehood principle was employed to estimate the f, K and a characteristic parameters. Statistical t-test and F-test were used to analyse the set of parameters.
Resumo:
This work reviews recent studies of underpotential deposition (UPD) of several metals on Pt and Au substrates performed in the Grupo de Materiais Eletroquímicos e Métodos Eletroanalíticos (IQSC -- USP, São Carlos). The UPD Cu, Cd and Pb on Pt were analysed in terms of their influence in the oxygen evolution reaction. Partial blockage of surface active sites, promoted by Pb ad-atoms, resulted in a change from water to hydrogen peroxide as the final product. The Ag UPD on Pt and Au substrates was also discussed in this work. A detailed model of charge calculation for Ag monolayer was developed and confirmed by the rotating ring-disk data. The partial charge transfer in UPD studies was analysed in the Cd/Pt and Cd/Au systems and a value of 0.5 was found for the adsorption electrovalence of Cd ad-ions. The Sn/Pt UPD systems were studied from the point of view of the valences of metallic ions in solution. The deposition from Sn(IV) generates a full monolayer with a maximum occupation of approximately 40% of the surface active sites (340 µC cm-2) plus 105 µC cm-2 of Hads (half monolayer). Changing the metallic ion for Sn(II), it was possible to deposit a full monolayer (210 µC cm-2) without any detectable Hads. Finally, the effect of anions was discussed in the Zn/Pt and Zn/Au systems. Here, the hydrogen evolution reaction (her) and the hydrogen adsorption/desorption were used in order to investigate the maximum coverage of the surface with Zn ad-atoms. The full monolayer, characterised by the complete absence of Hads, was achieved only in 0.5 M HF solutions.
Resumo:
This article reports on some basic and conceptual principles concerning electron transfer (ET) and/or intervalence transfer (IT) phenomena in inorganic mixed-valence systems.
Resumo:
In the present work electroluminescence in Si-SiO2 structures has been investigated. Electroluminescence has been recorded in the range of 250-900 nm in a system of electrolyte-insulator-semiconductor at the room temperature. The heating process of electrons in SiO2 was studied and possibility of separation it into two phases has been shown. The nature of luminescence centers and the model of its formation were proposed. This paper also includes consideration of oxide layer formation. Charge transfer mechanisms have been attended as well. The nature of electroluminescence is understood in detail. As a matter of fact, electron traps in silicon are the centers of luminescence. Electroluminescence occurs when electrons move from one trap to another. Thus the radiation of light quantum occurs. These traps appear as a result of the oxide growth. At the same time the bonds deformation of silicon atoms with SiOH groups is not excludes. As a result, dangling bonds are appeared, which are the trapping centers or the centers of luminescence.
Resumo:
Here we present an overview of electroluminescent devices that use conjugated polymers as the active media. The principal components of the devices are described and we show some examples of conjugated polymers and copolymers usually employed in polymeric light emitting devices (PLED). Some aspects of the photo and electroluminescence properties as well as of the energy transfer processes are discussed. As an example, we present some of the photophysical properties of poly(fluorene)s, a class of conjugated polymers with blue emission.
Resumo:
An undergraduate organic lab experiment is described based on the preparation of two readily accessible hydrazones. The UV-visible spectra of these N-H acids and of their conjugate bases are employed to illustrate the importance of through-conjugation in determining their acid strength and their internal charge-transfer-band transitions.
Resumo:
Hydrogen-bonded complexes formed by the interaction of the heterocyclic molecules C2H4O and C2H5N with HF, HCN, HNC and C2H2 have been studied using density functional theory. The hydrogen bond strength has been analyzed through electron density charge transfer from the proton acceptor to the proton donor. The density charge transfer has been estimated using different methods such as Mulliken population analysis, CHELPG, GAPT and AIM. It has been shown that AIM-estimated charge transfer correlates very well with the hydrogen bond energy and the infrared bathochromic effect of the proton donor stretching frequencies.
Resumo:
This thesis is devoted to investigations of three typical representatives of the II-V diluted magnetic semiconductors, Zn1-xMnxAs2, (Zn1-xMnx)3As2 and p-CdSb:Ni. When this work started the family of the II-V semiconductors was presented by only the compounds belonging to the subgroup II3-V2, as (Zn1-xMnx)3As2, whereas the rest of the materials mentioned above were not investigated at all. Pronounced low-field magnetic irreversibility, accompanied with a ferromagnetic transition, are observed in Zn1-xMnxAs2 and (Zn1-xMnx)3As2 near 300 K. These features give evidence for presence of MnAs nanosize magnetic clusters, responsible for frustrated ground magnetic state. In addition, (Zn1-xMnx)3As2 demonstrates large paramagnetic response due to considerable amount of single Mn ions and small antiferromagnetic clusters. Similar paramagnetic system existing in Zn1-xMnxAs2 is much weaker. Distinct low-field magnetic irreversibility, accompanied with a rapid saturation of the magnetization with increasing magnetic field, is observed near the room temperature in p- CdSb:Ni, as well. Such behavior is connected to the frustrated magnetic state, determined by Ni-rich magnetic Ni1-xSbx nanoclusters. Their large non-sphericity and preferable orientations are responsible for strong anisotropy of the coercivity and saturation magnetization of p- CdSb:Ni. Parameters of the Ni1-xSbx nanoclusters are estimated. Low-temperature resistivity of p-CdSb:Ni is governed by a hopping mechanism of charge transfer. The variable-range hopping conductivity, observed in zero magnetic field, demonstrates a tendency of transformation into the nearest-neighbor hopping conductivity in non-zero magnetic filed. The Hall effect in p-CdSb:Ni exhibits presence of a positive normal and a negative anomalous contributions to the Hall resistivity. The normal Hall coefficient is governed mainly by holes activated into the valence band, whereas the anomalous Hall effect, attributable to the Ni1-xSbx nanoclusters with ferromagnetically ordered internal spins, exhibits a low-temperature power-law resistivity scaling.
Resumo:
This work proposes a new simple and fast spectrophotometric method for cephalexin determination in pharmaceutical formulations. The method is based on the charge transfer reaction between cephalexin and quinalizarin in dimethylsulfoxide medium. Several analytical parameters related to the system were optimized and the reaction was characterized in terms of stoichiometry. Also, association constant and apparent molar absorptivity of the product were determined. The method presented a limit of detection of 0.46 mg L-1 and a quantification limit of 1.5 mg L-1. It was successfully applied in the determination of cephalexin in two samples of commercial pharmaceutical formulations.
Resumo:
We report the development of two copolymers based on 2-vinylpyridine, styrene and divinylbenzene (2Vpy-Sty-DVB) with different porosity degrees. The copolymers were subsequently quaternized with methyl iodide. To prepare charge transfer complexes, the unmodified copolymers and their derivatives quaternized with methyl iodine were impregnated with iodine. The antibacterial properties of the polymers were evaluated in dilutions ranging from 10² to 10(7) cells/mL of the auxotrophic OHd5-K12 Escherichia coli strain. It was possible to obtain materials with complete antibacterial activity even in the highest cell concentrations tested.
Resumo:
It is through the application of an electronic partition approach called Symmetry-Adapted Perturbation Theory (SAPT) that the nature of hydrogen bonds and van der Waals interactions can be unveiled according to the contribution of electrostatic, charge transfer, exchange repulsion, polarization, and dispersion terms. Among these, electrostatic partition governs the formation of the hydrogen bonds, whose energies are arguably high. However, the weakness of the interaction strength is caused by dispersion forces, whose contribution decisively lead to the stabilization of complexes formed via van der Waals interactions.