944 resultados para CHARGE CONTROL MODEL


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Rijke tube is used to demonstrate model-based control of a combustion instability, where controller design is based on measurement of the unstable system. The Rijke tube used was of length 0.75m and had a grid-stabilised laminar flame in its lower half. A microphone was used as a sensor and a loudspeaker as an actuator for active control. The open loop transfer function (OLTF) required for controller design was that from the actuator to the sensor. This was measured experimentally by sending a signal with two components to the actuator. The first was a control component from an empirically designed controller, which was used to stabilise the system, thus eliminating the non-linear limit cycle. The second was a high bandwidth signal for identification of the OLTF. This approach to measuring the OLTF is generic and can be applied to large-scale combustors. The measured OLTF showed that only the fundamental mode of the tube was unstable; this was consistent with the OLTF predicted by a mathematical model of the tube, involving 1-D linear acoustic waves and a time delay heat release model. Based on the measured OLTF, a controller to stabilise the instability was designed using Nyquist techniques. This was implemented and was seen to result in an 80dB reduction in the microphone pressure spectrum. A robustness study was performed by adding an additional length to the top of the Rijke tobe. The controller was found to achieve control up to an increase in tube length of 19%. This compared favourably with the empirical controller, which lost control for an increase in tube length of less than 3%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the application of variable-horizon model predictive control to trajectory generation in surface excavation. A nonlinear dynamic model of a surface mining machine digging in oil sand is developed as a test platform. This model is then stabilised with an inner-loop controller before being linearised to generate a prediction model. The linear model is used to design a predictive controller for trajectory generation. A variable horizon formulation is augmented with extra terms in the cost function to allow more control over digging, whilst still preserving the guarantee of finite-time completion. Simulations show the generation of realistic trajectories, motivating new applications of variable horizon MPC for autonomy that go beyond the realm of vehicle path planning. ©2010 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lean premixed prevaporized (LPP) technology has been widely used in the new generation of gas turbines in which reduced emissions are a priority. However, such combustion systems are susceptible to the damage of self-excited oscillations. Feedback control provide a way of preventing such dynamic stabilities. A flame dynamics assumption is proposed for a recently developed unsteady heat release model, the robust design technique, ℋ ∞ loop-shaping, is applied for the controller design and the performance of the controller is confirmed by simulations of the closed-loop system. The Integral Quadratic Constraints(IQC) method is employed to prove the stability of the closed-loop system. ©2010 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Steering feel, or steering torque feedback, is widely regarded as an important aspect of the handling quality of a vehicle. Despite this, there is little theoretical understanding of its role. This paper describes an initial attempt to model the role of steering torque feedback arising from lateral tyre forces. The path-following control of a nonlinear vehicle model is implemented using a time-varying model predictive controller. A series of Kalman filters are used to represent the driver's ability to generate estimates of the system states from noisy sensory measurements, including the steering torque. It is found that under constant road friction conditions, the steering torque feedback reduces path-following errors provided the friction is sufficiently high to prevent frequent saturation of the tyres. When the driver model is extended to allow identification of, and adaptation to, a varying friction condition, it is found that the steering torque assists in the accurate identification of the friction condition. The simulation results give insight into the role of steering torque feedback arising from lateral tyre forces. The paper concludes with recommendations for further work. © 2011 Taylor & Francis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study compared adaptation in novel force fields where trajectories were initially either stable or unstable to elucidate the processes of learning novel skills and adapting to new environments. Subjects learned to move in a null force field (NF), which was unexpectedly changed either to a velocity-dependent force field (VF), which resulted in perturbed but stable hand trajectories, or a position-dependent divergent force field (DF), which resulted in unstable trajectories. With practice, subjects learned to compensate for the perturbations produced by both force fields. Adaptation was characterized by an initial increase in the activation of all muscles followed by a gradual reduction. The time course of the increase in activation was correlated with a reduction in hand-path error for the DF but not for the VF. Adaptation to the VF could have been achieved solely by formation of an inverse dynamics model and adaptation to the DF solely by impedance control. However, indices of learning, such as hand-path error, joint torque, and electromyographic activation and deactivation suggest that the CNS combined these processes during adaptation to both force fields. Our results suggest that during the early phase of learning there is an increase in endpoint stiffness that serves to reduce hand-path error and provides additional stability, regardless of whether the dynamics are stable or unstable. We suggest that the motor control system utilizes an inverse dynamics model to learn the mean dynamics and an impedance controller to assist in the formation of the inverse dynamics model and to generate needed stability.