988 resultados para CAM-B3LYP*
Resumo:
Neutral and cationic \[C-2,P-2] were investigated by a combination of mass spectrometry and electronic structure calculations. The cationic \[C-2,P-2](.+) potential energy surface including all relevant minima, transition states and fragmentation products was calculated at the B3LYP/6-311G(3df) level of theory. The most stable structures are linear PCCP.+ 1(.+) (E-rel=0 kcal mol(-1)), a three-membered ring with exocyclic phosphorus c-(PCC)-P 2(.+) (E-rel = 40.8 kcal mol(-1)), and the rhombic isomer 3(.+) (E-rel = 24.9 kcal mol(-1)). All fragmentation channels are significantly higher in energy than any of the \[C-2,P-2](.+) isomers. Experimentally, \[C-2,P-2](.+) ions are generated under high vacuum conditions by electron ionization of two different precursors. The fragmentation of \[C-2,P-2](.+) on collisional activation is preceded by rearrangement reactions which obscure the structural connectivity of the ions. The existence and the high stability of neutral \[C-2,P-2] were proved by a neutralization-reionization (NR) experiment. Although an unambiguous structural assignment of the neutral species cannot be drawn, both theory and experiment suggest that the long-sought neutral, linear PCCP 1 is generated using the NR technique.
Resumo:
In this paper, we provide the results of a field study of a Ubicomp system called CAM (Cooperative Artefact Memory) in a Product Design studio. CAM is a mobile-tagging based messaging system that allows designers to store relevant information onto their design artefacts in the form of messages, annotations and external web links. From our field study results, we observe that the use of CAM adds another shared ‘space’ onto these design artefacts – that are in their natural settings boundary objects themselves. In the paper, we provide several examples from the field illustrating how CAM helps in the design process.
Resumo:
Computations at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G* level of theory indicate that neutral C6CO is a stable species. The ground state of this neutral is the singlet cumulene oxide :C=C=C=C=C=C=C=O. The adiabatic electron affinity and dipole moment of singlet C6CO are 2.47 eV and 4.13 D, respectively, at this level of theory. The anion (C6CO)(-.) should be a possible precursor to this neutral. It has been formed by an unequivocal synthesis in the ion source of a mass spectrometer by the S(N)2(Si) reaction between (CH3)(3)Si-C=C-C=C-C=C-CO-CMe3 and F- to form C-=C-C=C-C=C-CO-CMe3 which loses Me3C in the source to form C6CO-.. Charge stripping of this anion by vertical Franck-Condon oxidation forms C6CO, characterised by the neutralisation-reionisation spectrum (-NR+) of C6CO-., which is stable during the timeframe of this experiment (10(-6) s), Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Both [C4CO]−· and [C2COC2]−· are formed in the ion source of a VG ZAB 2HF mass spectrometer by the respective processes HO− + Me3Si–CC–CC–CO–CMe3 → [C4CO]−· + Me3SiOH + Me3C·, and Me3Si–CC–CO–CC–SiMe3 + SF6 + e → [C2COC2]−· + 2Me3SiF + SF4. The second synthetic pathway involves a double desilylation reaction similar to that first reported by Squires. The two radical anion isomers produce different and characteristic charge reversal spectra upon collisional activation. In contrast, following collision induced charge stripping, both radical anions produce neutral C4CO as evidenced by the identical neutralisation reionisation (−NR+) spectra. The exclusive rearrangement of C213COC2 to C413CO indicates that 12C–O bond formation is not involved in the reaction. Ab initio calculations (at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G∗ level of theory) have been used to investigate the reaction coordinates on the potential surfaces for both singlet and triplet rearrangements of neutral C2COC2. Singlet C2COC2 is less stable than singlet C4CO by 78.8 kcal mol−1 and requires only 8.5 kcal mol−1 of additional energy to effect conversion to C4CO by a rearrangement sequence involving three C–C ring opening/cyclisation steps.
Resumo:
Capture of an electron by tetracyanoethylene oxide can initiate a number of decomposition pathways. One of these decompositions yields [(NC)3C]− as the ionic product. Ab initio calculations (at the B3LYP/6-31+G∗ level of theory) indicate that the formation of [(NC)3C]− is initiated by capture of an electron into the LUMO of tetracyanoethylene oxide to yield the anion radical [(NC)2C–O–C(CN)2]−· that undergoes internal nucleophilic substitution to form intermediate [(NC)3C–OCCN]−·. This intermediate dissociates to form [(NC)3C]− (m/z 90) as the ionic product. The radical (NC)3C· has an electron affinity of 4.0 eV (385 kJ mol−1). Ab initio calculations show that [(NC)3C]− is trigonal planar with the negative charge mainly on the nitrogens. A pictorial representation of this structure is the resonance structure formed from three degenerate contributing structures (NC)2–CCN−. The other product of the reaction is nominally (NCCO)·, but there is no definitive experimental evidence to indicate whether this radical survives intact, or decomposes to NC· and CO. The overall process [(NC)2C–O–C(CN)2]−· → [(NC)3C]− + (NCCO)· is calculated to be endothermic by 21 kJ mol−1 with an overall barrier of 268 kJ mol−1.
Resumo:
Five different anionic [C3′H4′O]•- isomers, i.e. the radical anions of acrolein, acetyl carbene, formyl methyl carbene, methoxy vinylidene, and oxyallyl are generated in an ion beam mass spectrometer and subjected to neutralization-reionization (NR) mass spectrometric experiments including neutral and ion decomposition difference (NIDD) mass spectrometry; the latter allows for the examination of the neutrals' unimolecular reactivity. Further, the anionic, the singlet and triplet neutral, and the cationic [C3′H4′O] •-/0/•+ potentialenergy surfaces are calculated at the B3LYP/6-311++G(d,p) level of theory. For some species, notably the singlet state of oxyallyl, the theoretical treatment is complemented by G2, CASSCF, and MR-CI calculations. Theory and experiment are in good agreement in that at the neutral stage (i) acrolein does not react within the μsec timescale, (ii) acetyl and formyl methyl carbenes isomerize to methyl ketene, (iii) methoxy vinylidene rearranges to methoxy acetylene, (iv) singlet 1A1 oxyallyl undergoes ring closure to cyclopropanone, and (v) triplet 3B2 oxyallyl may have a lifetime sufficient to survive a NR experiment.
Resumo:
In most art exhibitions, the creative part of the exhibition is assumed to be the artworks on display. But for the Capricornia Arts Mob’s first collective art exhibition in Rockhampton during NAIDOC Week in 2012, the process of developing the exhibition became the focus of creative action learning and action research. In working together to produce a multi-media exhibition, we learned about the collaborative processes and time required to develop a combined exhibition. We applied Indigenous ways of working – including yarning, cultural respect, cultural protocols, mentoring young people, providing a culturally safe working environment and sharing both time and food – to develop our first collective art exhibition. We developed a process that allowed us to ask deep questions, engage in a joint journey of learning, and develop our collective story. This paper explores the processes that the Capricornia Arts Mob used to develop the exhibition for NAIDOC 2012.
Resumo:
Theoretical calculations of the C3HO potential surface at the CCSD(T)/aug-cc-pVDu/B3LYP/6-31G* level indicate that the three radicals HCCCO, CCCHO, and (cyclo-C3H)=O are stable, with HCCCO being the most stable of the three. A fourth isomer, CCHCO, is unstable with respect to cyclization to (cyclo-C3H)=O. Two isomers have been prepared by neutralization of charged precursors, formed as follows: (i) HCCCO, by HC drop C-C(O)-O+(H)(Me) --> HC3O+ + MeOH, and (ii) C2CHO, by (a) Me3SiC drop C-CHO + HO- --> C- drop C-CHO + Me3SiOH and (b) C- drop C-CH(OH)-C drop CH --> C- drop C-CHO + C2H2. A comparison of the CR and -NR+ spectra of -C2CHO indicate that C2CHO is (partially) rearranging to an isomer that shows significant formation of CO.(+) in the -NR+ spectrum of the anion. Ab initio calculations indicate that HCCCO is the product of the isomerism and that a proportion of these isomerized neutrals dissociate to CO and C2H. The neutral HCCCO may be formed by (i) synchronous rearrangement of C2CHO and/or (ii) stepwise rearrangement of C2CHO through (cyclo-C3H)=O. The second of these processes should have the higher rate, as it has the lower barrier in the rate-determining step and the higher Arrhenius pre-exponential A factor.
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement and vehicle redirectionality. Actual PWFB test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many was done pertaining to PWFB. This research probes a new technique to model joints in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.
Resumo:
The ortho, meta and para anions of methyl benzoate may be made in the source of a mass spectrometer by the S(N)2(Si) reactions between HO- and methyl (o-, m-, and p-trimethylsilyl)benzoate respectively. All three anions lose CO upon collisional activation to form the ortho anion of anisole in the ratio ortho>>meta > para. The rearrangement process is charge directed through the ortho anion. Theoretical calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that the conversion of the meta and para anions to the ortho anion prior to loss of CO involve 1,2-H transfer(s), rather than carbon scrambling of the methoxycarbonylphenyl anion. There are two mechanisms which can account for this rearrangement, viz. (A) cyclisation of the ortho anion centre to the carbonyl group of the ester to give a cyclic carbonyl system in which the incipient methoxide anion substitutes at one of the two equivalent ring carbons of the three membered ring to yield an intermediate which loses CO to give the ortho anion of anisole, and (B) an elimination reaction to give an intermediate benzyne-methoxycarbonyl anion complex in which the MeOCO- species acts as a MeO- donor, which then adds to benzyne to yield the ortho anion of anisole. Calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that (i) the barrier in the first step (the rate determining step) of process A is 87 kJ mol(-1) less than that for the synchronous benzyne process B, and (ii) there are more low frequency vibrations in the transition state for benzyne process B than for the corresponding transition state for process A. Stepwise process A has the lower barrier for the rate determining step, and the lower Arrhenius factor: we cannot differentiate between these two mechanisms on available evidence.
Resumo:
Charge reversal (CR) and neutralization reionization (NR) experiments carried out on a 4-sector mass spectrometer demonstrate that isotopically labeled, linear C-4 anion rearranges upon collisional oxidation. The cations and neutrals formed in these experiments exhibit differing degrees of isotopic scrambling in their fragmentation patterns, indicative of (at least) partial isomerization of both states. Theoretical studies, employing the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory, favor conversion to the rhombic C-4 isomer on both cationic and neutral potential-energy surfaces with the rhombic structures predicted to be slightly more stable than the linear forms in each case. The combination of experiment with theory indicates that the elusive rhombic C-4 is formed as a cation and as a neutral following charge stripping of linear C-4(-)
Resumo:
Neutral NCN is made in a mass spectrometer by charge stripping of NCN-., while neutral dicyanocarbene NCCCN can be formed by neutralization of either the corresponding anionic and cationic species, NCCCN-. and NCCCN+.. Theoretical calculations at the RCCSD(T)/aug-cc-pVTZ//B3LYP/6-31+G(d) level of theory indicate that the (3)Sigma (-)(g) State of NCCCN is 18 kcal mol(-1) more stable than the (1)A(1) state. While the majority of neutrals formed from either NCCCN-. or NCCCN+. correspond to NCCCN, a proportion of the neutral NCCCN molecules have sufficient excess energy to effect rearrangement, as evidenced by a loss of atomic carbon in the neutralization reionization (NR) spectra of either NCCCN+. and NCCCN-.. C-13 labeling studies indicate that loss of carbon occurs statistically following or accompanied by scrambling of all three carbon atoms. A theoretical study at the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) level of theory indicates that C loss is a consequence of the rearrangement sequence NCCCN --> CNCCN --> CNCNC and that C scrambling occurs within singlet CNCCN via the intermediacy of a four-membered C-2v-symmetrical transition structure.
Resumo:
Consideration of theoretical calculations \[E3LYP/aug-cc-pVDZ//B3LYP/6-31G(d)\] of the structures of ten C7H2 neutral isomers and the nine corresponding C7H2 radical anions have led us to synthesize four stable C7H2 radical anions in the ion source of our ZAB 2HF mass spectrometer, and to convert these to C7H2 neutrals. The four radical anion isomers prepared were (i) \[(HC equivalent to C)(2)C=C=C\](-.) \[from the reaction between (HC equivalent to C)(3)COCH3 and HO- \], (ii) \[HC=C=C=C=C=C=CH\](-.) \[from the reaction between HC equivalent to C-C equivalent to C-CD(OH)-C equivalent to CH and HO-\], (iii) \[C=C=C=C=C=C=CH2\](-.) \[from the reaction between DC equivalent to C-C equivalent to C-C equivalent to C-CH2OCH2CH3 and HO-\], and (iv) \[C equivalent to C-CH2-C equivalent to C-C equivalent to C\](-.) \[from the bis desilylation reaction of (CH3)(3)Si-C equivalent to C-CH2-C equivalent to C-C equivalent to C-Si (CH3)(3)With SF6-.\]. The four anions were further characterized by their collisional activation (negative ion) and charge reversal (CR, positive ion) mass spectra. The anions were converted into their corresponding neutrals by charge stripping, and the correspondence between the charge reversal (CR) and neutralization reionization (-NR+) mass spectra of each anion is taken as evidence that within the time frame of the -NR+ experiment (some 10(-6) s), each neutral is stable and undergoes no major rearrangement or interconversion to a more stable isomer. Theory and experiment are in accord for these systems.
Resumo:
Consideration of theoretical calculations [B3LYP/aug-cc-pVDZ//B3LYP/6-31G(d)] of the structures of ten C7H2 neutral isomers and the nine corresponding C7H2 radical anions have led us to synthesize four stable C7H2 radical anions in the ion source of our ZAB 2HF mass spectrometer, and to convert these to C7H2 neutrals. The four radical anion isomers prepared were (i) [(HC≡C)2C=C=C]-̇ [from the reaction between (HC≡C)3COCH3 and HO- ], (ii) [HC=C=C=C=C=C=CH]-̇ [from the reaction between HC≡C-C≡C- CD(OH)-C≡CH and HO-], (iii) [C=C=C=C=C=C=CH2]-̇ [from the reaction between DC≡C-C≡C- C≡C-CH2OCH2CH3 and HO-], and (iv) [C≡C-CH2-C≡C-C≡C]-̇ [from the bis desilylation reaction of (CH3)3Si-C≡C-CH2-C≡C-C≡C-Si (CH3)3 with SF6 -̇]. The four anions were further characterized by their collisional activation (negative ion) and charge reversal (CR, positive ion) mass spectra. The anions were converted into their corresponding neutrals by charge stripping, and the correspondence between the charge reversal (CR) and neutralization reionization (-NR+) mass spectra of each anion is taken as evidence that within the time frame of the -NR+ experiment (some 10-6 s), each neutral is stable and undergoes no major rearrangement or interconversion to a more stable isomer. Theory and experiment are in accord for these systems.
Resumo:
The E-CO(2) elimination reactions of alkyl hydroperoxides proceed via abstraction of an (x-hydrogen by a base: X- + (RRHCOOH)-R-1-H-2 -> HX + (RRC)-R-1-C-2=O + HO-. Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO- + CH3OOH, HO- + CD3OOH, and H18O- + CH3OOH. the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO- are the exclusive pathways observed for (CH3)(3)COOH, which has no (x-hydrogen. All results are consistent with the E-CO(2) mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO- + CH3OOH also reveals some interaction between H2O and HO- within the E(CO)2 product complex [H2O center dot center dot center dot CH2=O center dot center dot center dot HO-]. There is little evidence, however. for the formation of the most exothermic products H2O + CH2(OH)O-, which would arise from nuclephilic condensation of CH2=O and HO-. The results suggest that the product dynamics are not totally statistical but are rather direct after the E-CO(2) transition state. The larger HO- + CH3CH2OOH system displays more statistical behavior during complex dissociation.