913 resultados para C-jun Kinase
Resumo:
Objective-We previously demonstrated that upregulation of intermediate-conductance Ca2+ -activated K+ channels (KCa 3.1) is necessary for mitogen-induced phenotypic modulation in isolated porcine coronary smooth muscle cells (SMCs). The objective of the present study was to determine the role of KCa3.1 in the regulation of coronary SMC phenotypic modulation in vivo using a swine model of postangioplasty restenosis. Methods and Results-Balloon angioplasty was performed on coronary arteries of swine using either noncoated or balloons coated with the specific KCa3.1 blocker TRAM-34. Expression of KCa3.1, c-jun, c-fos, repressor element-1 silencing transcription factor (REST), smooth muscle myosin heavy chain (SMMHC), and myocardin was measured using qRT-PCR in isolated medial cells 2 hours and 2 days postangioplasty. KCa3.1, c-jun, and c-fos mRNA levels were increased 2 hours postangioplasty, whereas REST expression decreased. SMMHC expression was unchanged at 2 hours, but decreased 2 days postangioplasty. Use of TRAM-34 coated balloons prevented KCa3.1 upregulation and REST downregulation at 2 hours, SMMHC and myocardin downregulation at 2 days, and attenuated subsequent restenosis 14 and 28 days postangioplasty. Immunohistochemical analysis demonstrated corresponding changes at the protein level. Conclusion-Blockade of KCa3.1 by delivery of TRAM-34 via balloon catheter prevented smooth muscle phenotypic modulation and limited subsequent restenosis. © 2008 American Heart Association, Inc.
Resumo:
Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43.
Resumo:
Metazoans rely on efficient mechanisms to oppose infections caused by pathogens. The immediate and first-line defense mechanism(s) in metazoans, referred to as the innate immune system, is initiated upon recognition of microbial intruders by germline encoded receptors and is executed by a set of rapid effector mechanisms. Adaptive immunity is restricted to vertebrate species and it is controlled and assisted by the innate immune system. Interestingly, most of the basic signaling cascades that regulate the primeval innate defense mechanism(s) have been well conserved during evolution, for instance between humans and the fruit fly, Drosophila melanogaster. Being devoid of adaptive signaling and effector systems, Drosophila has become an established model system for studying pristine innate immune cascades and reactions. In general, an immune response is evoked when microorganisms pass the fruit fly’s physical barriers (e.g. cuticle, epithelial lining of gut and trachea), and it is mainly executed in the hemolymph, the equivalent of the mammalian blood. Innate immunity in the fruit fly consists of a phenoloxidase (PO) response, a cellular response (hemocytes), an antiviral response, and the NF-κB dependent production of antimicrobial peptides referred to as the humoral response. The JAK/STAT and Jun kinase signaling cascades are also implicated in the defence against pathogens.
Resumo:
In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context
Resumo:
Angiotensin II (Ang II) and platelet-derived growth factor-BB (PDGF-BB) are associated with excessive cell migration, proliferation and many growth-related diseases. However, whether these agents utilise similar mechanisms to trigger vascular pathologies remains to be explored. The effects of Ang II and PDGF-BB on coronary artery smooth muscle cell (CASMC) migration and proliferation were investigated via Dunn chemotaxis assay and the measurement of [3H]thymidine incorporation rates, respectively. Both atherogens produced similar degrees of cell migration which were dramatically inhibited by mevastatin (10 nM). However, the inhibitory effects of losartan (10 nM) and MnTBAP (a free radical scavenger; 50 μM) were found to be unique to Ang II-mediated chemotaxis. In contrast, MnTBAP, apocynin (an antioxidant and phagocytic NADPH oxidase inhibitor; 500 μM), mevastatin and pravastatin (100 nM) equally suppressed both Ang II and PDGF-BB-induced cellular growth. Although atherogens produced similar changes in NADPH oxidase, NOS and superoxide dismutase activities, they differentially regulated antioxidant glutathione peroxidase activity which was diminished by Ang II and unaffected by PDGF-BB. Studies with signal transduction pathway inhibitors revealed the involvement of multiple pathways i.e. protein kinase C, tyrosine kinase and MAPK in Ang II- and/or PDGF-BB-induced aforementioned enzyme activity changes. In conclusion, Ang II and PDGF-BB may induce coronary atherosclerotic disease formation by stimulating CASMC migration and proliferation through agent-specific regulation of oxidative status and utilisation of different signal transduction pathways.
Resumo:
Protein kinase C (PKC) comprises a superfamily of isoenzymes, many of which are activated by cofactors such as diacylglycerol and phosphatidylserine. In order to be capable of activation, PKC must first undergo a series of phosphorylations. In turn, activated PKC phosphorylates a wide variety of intracellular target proteins and has multiple functions in signal transduced cellular regulation. A role for PKC activation had been noted in several renal diseases, but two that have had most investigation are diabetic nephropathy and kidney cancer. In diabetic nephropathy, an elevation in diacylglycerol and/or other cofactor stimulants leads to an increase in activity of certain PKC isoforms, changes that are linked to the development of dysfunctional vasculature. The ability of isoform-specific PKC inhibitors to antagonize diabetes-induced vascular disease is a new avenue for treatment of this disorder. In the development and progressive invasiveness of kidney cancer, increased activity of several specific isoforms of PKC has been noted. It is thought that this may promote the kidney cancer's inherent resistance to apoptosis, in natural regression or after treatments, or it may promote the invasiveness of renal cancers via cellular differentiation pathways. In general, however, a more complete understanding of the functions of individual PKC isoforms in the kidney, and development or recognition of specific inhibitors or promoters of their activation, will be necessary to apply this knowledge for treatment of cellular dysregulation in renal disease.
Resumo:
The gonadotropin hypothesis proposes that elevated serum gonadotropin levels may increase the risk of epithelial ovarian cancer (EOC). We have studied the effect of treating EOC cell lines (OV207 and OVCAR-3) with FSH or LH. Both gonadotropins activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and increased cell migration that was inhibited by the MAPK 1 inhibitor PD98059. Both extra- and intracellular calcium ion signalling were implicated in gonadotropin-induced ERK1/2 activation as treatment with either the calcium chelator EGTA or an inhibitor of intracellular calcium release, dantrolene, inhibited gonadotropin-induced ERK1/2 activation. Verapamil was also inhibitory, indicating that gonadotropins activate calcium influx via L-type voltage-dependent calcium channels. The cAMP/protein kinase A (PKA) pathway was not involved in the mediation of gonadotropin action in these cells as gonadotropins did not increase intracellular cAMP formation and inhibition of PKA did not affect gonadotropin-induced phosphorylation of ERK1/2. Activation of ERK1/2 was inhibited by the protein kinase C (PKC) inhibitor GF 109203X as well as by the PKCδ inhibitor rottlerin, and downregulation of PKCδ was inhibited by small interfering RNA (siRNA), highlighting the importance of PKCδ in the gonadotropin signalling cascade. Furthermore, in addition to inhibition by PD98059, gonadotropin-induced ovarian cancer cell migration was also inhibited by verapamil, GF 109203X and rottlerin. Similarly, gonadotropin-induced proliferation was inhibited by PD98059, verapamil, GF 109203X and PKCδ siRNA. Taken together, these results demonstrate that gonadotropins induce both ovarian cancer cell migration and proliferation by activation of ERK1/2 signalling in a calcium- and PKCδ-dependent manner.
Resumo:
Epidermal growth factor receptor (EGFR) levels predict a poor outcome in human breast cancer and are most commonly associated with proliferative effects of epidermal growth factor (EGF), with little emphasis placed on motogenic responses to EGF. We found that MDA-MB-231 human breast cancer cells elicited a potent chemotactic response despite their complete lack of a proliferative response to EGF. Antagonists of EGFR ligation, the EGFR kinase, phosphatidylinositol 3'-kinase, and phospholipase C, but not the mitogen- activated protein kinases (extracellular signal-regulated protein kinase 1 and 2), blocked MDA-MB-231 chemotaxis. These findings suggest that EGF may influence human breast cancer progression via migratory pathways, the signaling for which appears to be dissociated, at least in part, from the proliferative pathways.
Resumo:
Increased activation of c-src seen in colorectal cancer is an indicator of a poor clinical prognosis, suggesting that identification of downstream effectors of c-src may lead to new avenues of therapy. Guanylyl cyclase C (GC-C) is a receptor for the gastrointestinal hormones guanylin and uroguanylin and the bacterial heat-stable enterotoxin. Though activation of GC-C by its ligands elevates intracellular cyclic GMP (cGMP) levels and inhibits cell proliferation, its persistent expression in colorectal carcinomas and occult metastases makes it a marker for malignancy. We show here that GC-C is a substrate for inhibitory phosphorylation by c-src, resulting in reduced ligand-mediated cGMP production. Consequently, active c-src in colonic cells can overcome GC-C-mediated control of the cell cycle. Furthermore, docking of the c-src SH2 domain to phosphorylated GC-C results in colocalization and further activation of c-src. We therefore propose a novel feed-forward mechanism of activation of c-src that is induced by cross talk between a receptor GC and a tyrosine kinase. Our findings have important implications in understanding the molecular mechanisms involved in the progression and treatment of colorectal cancer.
Resumo:
The protein kinases (PKs) belong to the largest single family of enzymes, phosphotransferases, which catalyze the phosphorylation of other enzymes and proteins and function primarily in signal transduction. Consequently, PKs regulate cell mechanisms such as growth, differentiation, and proliferation. Dysfunction of these cellular mechanisms may lead to cancer, a major predicament in health care. Even though there is a range of clinically available cancer-fighting drugs, increasing number of cancer cases and setbacks such as drug resistance, constantly keep cancer research active. At the commencement of this study an isophthalic acid derivative had been suggested to bind to the regulatory domain of protein kinase C (PKC). In order to investigate the biological effects and structure-activity relationships (SARs) of this new chemical entity, a library of compounds was synthesized. The best compounds induced apoptosis in human leukemia HL-60 cells and were not cytotoxic in Swiss 3T3 fibroblasts. In addition, the best apoptosis inducers were neither cytotoxic nor mutagenic. Furthermore, results from binding affinity assays of PKC isoforms revealed the pharmacophores of these isophthalic acid derivatives. The best inhibition constants of the tested compounds were measured to 210 nM for PKCα and to 530 nM for PKCδ. Among natural compounds targeting the regulatory domain of PKC, the target of bistramide A has been a matter of debate. It was initially found to activate PKCδ; however, actin was recently reported as the main target. In order to clarify and to further study the biological effects of bistramide A, the total syntheses of the natural compound and two isomers were performed. Biological assays of the compounds revealed accumulation of 4n polyploid cells as the primary mode of action and the compounds showed similar overall antiproliferative activities. However, each compound showed a distinct distribution of antimitotic effect presumably via actin binding, proapoptotic effect presumably via PKCδ, and pro-differentiation effect as evidenced by CD11b expression. Furthermore, it was shown that the antimitotic and proapoptotic effects of bistramide A were not secondary effects of actin binding but independent effects. The third aim in this study was to synthesize a library of a new class of urea-based type II inhibitors targeted at the kinase domain of anaplastic lymphoma kinase (ALK). The best compounds in this library showed IC50 values as low as 390 nM for ALK while the initial low cellular activities were successfully increased even by more than 70 times for NPM-ALK- positive BaF3 cells. More importantly, selective antiproliferative activity on ALK-positive cell lines was achieved; while the best compound affected the BaF3 and SU-DHL-1 cells with IC50 values of 0.5 and 0.8 μM, respectively, they were less toxic to the NPM-ALK-negative human leukemic cells U937 (IC50 = 3.2 μM) and BaF3 parental cells (IC50 = 5.4 μM). Furthermore, SAR studies of the synthesized compounds revealed functional groups and positions of the scaffold, which enhanced the enzymatic and cellular activities.
Resumo:
Judith E. Humphries, Leah Elizondo and Timothy P. Yoshino (2001). Protein kinase C regulation of cell spreading in the molluscan Biomphalaria glabrata embryonic (Bge) cell line. Biochimica et Biophysica Acta - Molecular Cell Research, 1540(3), 243-252. Sponsorship: National Institutes of Health AI 15503 RAE2008
Resumo:
Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer-binding proteins, via its 3'UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.
Resumo:
The generation of a functional nervous system requires that neuronal cells and axons navigate precisely to their appropriate targets. The Eph Receptor Tyrosine Kinases (RTKs) and their ephrin ligands have emerged as one of the important guidance cues for neuronal and axon navigation. However, the molecular mechanisms of how Eph RTKs regulate these processes are still incomplete. The purpose of this work was to contribute to the understanding of how Eph receptors regulate axon guidance by identifying and characterizing components of the Caenorhabditis elegans Eph RTK (VAB-1) signaling pathway. To achieve this objective I utilized a hyper active form of the VAB-1 Eph RTK (MYR-VAB-1) that caused penetrant axon guidance defects in the PLM mechanosensory neurons, and screened for suppressors of the MYR-VAB-1 phenotype. Through a candidate gene approach, I identified the adaptor NCK-1 as a downstream effector of VAB-1. Molecular and genetic analysis revealed that the nck-1 gene encodes for two isoforms (NCK-1A and NCK-1B) that share similar expression patterns in parts of the nervous system, but also have independent expression patterns in other tissues. Genetic rescue experiments showed that both NCK-1 isoforms can function in axon guidance, but each isoform also has specific functions. In vitro binding assays showed that NCK-1 binds to VAB-1 in a kinase dependent manner. In addition to NCK-1, WSP-1/N-WASP was also identified as an effector of VAB-1 signaling. Phenotypic analysis showed that nck-1 and wsp-1 mutants had PLM axon over extension defects similar to vab-1 animals. Furthermore, VAB-1, NCK-1 and WSP-1 formed a complex in vitro. Intriguingly, protein binding assays showed that NCK-1 can also bind to the actin regulator UNC-34/Ena, but genetic experiments suggest that unc-34 is an inhibitor of nck-1 function. Through various genetic and biochemical experiments, I provide evidence that VAB-1 can disrupt the NCK-1/UNC-34 complex, and negatively regulate UNC-34. Taken together, my work provides a model of how VAB-1 RTK signaling can inhibit axon extension. I propose that activated VAB-1 can prevent axon extension by inhibiting growth cone filopodia formation. This is accomplished by inhibiting UNC-34/Ena activity, and simultaneously activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex.