973 resultados para Boundary value problems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mathematical formulation for finite strain elasto plastic consolidation of fully saturated soil media is presented. Strong and weak forms of the boundary-value problem are derived using both the material and spatial descriptions. The algorithmic treatment of finite strain elastoplasticity for the solid phase is based on multiplicative decomposition and is coupled with the algorithm for fluid flow via the Kirchhoff pore water pressure. Balance laws are written for the soil-water mixture following the motion of the soil matrix alone. It is shown that the motion of the fluid phase only affects the Jacobian of the solid phase motion, and therefore can be characterized completely by the motion of the soil matrix. Furthermore, it is shown from energy balance consideration that the effective, or intergranular, stress is the appropriate measure of stress for describing the constitutive response of the soil skeleton since it absorbs all the strain energy generated in the saturated soil-water mixture. Finally, it is shown that the mathematical model is amenable to consistent linearization, and that explicit expressions for the consistent tangent operators can be derived for use in numerical solutions such as those based on the finite element method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, Adams explicit and implicit formulas are obtained in a simple way and a relationship between them is established, allowing for their joint implementation as predictor-corrector methods. It is shown the purposefulness, from a didactic point of view, of Excel spreadsheets for calculations and for the orderly presentation of results in the application of Adams methods to solving initial value problems in ordinary differential equations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of optimal constant continuous low-thrust transfer in the context of the restricted two-body problem (R2BP). Using the Pontryagin’s principle, the problem is formulated as a two point boundary value problem (TPBVP) for a Hamiltonian system. Lie transforms obtained through the Deprit method allow us to obtain the canonical mapping of the phase flow as a series in terms of the order of magnitude of the thrust applied. The reachable set of states starting from a given initial condition using optimal control policy is obtained analytically. In addition, a particular optimal transfer can be computed as the solution of a non-linear algebraic equation. Se investiga el uso de series y transformadas de Lie en problemas de optimización de trayectorias de satélites impulsados por motores de bajo empuje

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One key issue in the simulation of bare electrodynamic tethers (EDTs) is the accurate and fast computation of the collected current, an ambient dependent operation necessary to determine the Lorentz force for each time step. This paper introduces a novel semianalytical solution that allows researchers to compute the current distribution along the tether efficient and effectively under orbital-motion-limited (OML) and beyond OML conditions, i.e., if tether radius is greater than a certain ambient dependent threshold. The method reduces the original boundary value problem to a couple of nonlinear equations. If certain dimensionless variables are used, the beyond OML effect just makes the tether characteristic length L ∗ larger and it is decoupled from the current determination problem. A validation of the results and a comparison of the performance in terms of the time consumed is provided, with respect to a previous ad hoc solution and a conventional shooting method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tesis se basa en el estudio de la trayectoria que pasa por dos puntos en el problema de los dos cuerpos, inicialmente desarrollado por Lambert, del que toma su nombre. En el pasado, el Problema de Lambert se ha utilizado para la determinación de órbitas a partir de observaciones astronómicas de los cuerpos celestes. Actualmente, se utiliza continuamente en determinación de órbitas, misiones planetaria e interplanetarias, encuentro espacial e interceptación, o incluso en corrección de orbitas. Dada su gran importancia, se decide investigar especialmente sobre su solución y las aplicaciones en las misiones espaciales actuales. El campo de investigación abierto, es muy amplio, así que, es necesario determinar unos objetivos específicos realistas, en el contexto de ejecución de una Tesis, pero que sirvan para mostrar con suficiente claridad el potencial de los resultados aportados en este trabajo, e incluso poder extenderlos a otros campos de aplicación. Como resultado de este análisis, el objetivo principal de la Tesis se enfoca en el desarrollo de algoritmos para resolver el Problema de Lambert, que puedan ser aplicados de forma muy eficiente en las misiones reales donde aparece. En todos los desarrollos, se ha considerado especialmente la eficiencia del cálculo computacional necesario en comparación con los métodos existentes en la actualidad, destacando la forma de evitar la pérdida de precisión inherente a este tipo de algoritmos y la posibilidad de aplicar cualquier método iterativo que implique el uso de derivadas de cualquier orden. En busca de estos objetivos, se desarrollan varias soluciones para resolver el Problema de Lambert, todas ellas basadas en la resolución de ecuaciones transcendentes, con las cuales, se alcanzan las siguientes aportaciones principales de este trabajo: • Una forma genérica completamente diferente de obtener las diversas ecuaciones para resolver el Problema de Lambert, mediante desarrollo analítico, desde cero, a partir de las ecuaciones elementales conocidas de las cónicas (geométricas y temporal), proporcionando en todas ellas fórmulas para el cálculo de derivadas de cualquier orden. • Proporcionar una visión unificada de las ecuaciones más relevantes existentes, mostrando la equivalencia con variantes de las ecuaciones aquí desarrolladas. • Deducción de una nueva variante de ecuación, el mayor logro de esta Tesis, que destaca en eficiencia sobre todas las demás (tanto en coste como en precisión). • Estudio de la sensibilidad de la solución ante variación de los datos iniciales, y como aplicar los resultados a casos reales de optimización de trayectorias. • También, a partir de los resultados, es posible deducir muchas propiedades utilizadas en la literatura para simplificar el problema, en particular la propiedad de invariancia, que conduce al Problema Transformado Simplificado. ABSTRACT This thesis is based on the study of the two-body, two-point boundary-value problem, initially developed by Lambert, from who it takes its name. Since the past, Lambert's Problem has been used for orbit determination from astronomical observations of celestial bodies. Currently, it is continuously used in orbit determinations, for planetary and interplanetary missions, space rendezvous, and interception, or even in orbit corrections. Given its great importance, it is decided to investigate their solution and applications in the current space missions. The open research field is very wide, it is necessary to determine specific and realistic objectives in the execution context of a Thesis, but that these serve to show clearly enough the potential of the results provided in this work, and even to extended them to other areas of application. As a result of this analysis, the main aim of the thesis focuses on the development of algorithms to solve the Lambert’s Problem which can be applied very efficiently in real missions where it appears. In all these developments, it has been specially considered the efficiency of the required computational calculation compared to currently existing methods, highlighting how to avoid the loss of precision inherent in such algorithms and the possibility to apply any iterative method involving the use of derivatives of any order. Looking to meet these objectives, a number of solutions to solve the Lambert’s Problem are developed, all based on the resolution of transcendental equations, with which the following main contributions of this work are reached: • A completely different generic way to get the various equations to solve the Lambert’s Problem by analytical development, from scratch, from the known elementary conic equations (geometrics and temporal), by providing, in all cases, the calculation of derivatives of any order. • Provide a unified view of most existing relevant equations, showing the equivalence with variants of the equations developed here. • Deduction of a new variant of equation, the goal of this Thesis, which emphasizes efficiency (both computational cost and accuracy) over all other. • Estudio de la sensibilidad de la solución ante la variación de las condiciones iniciales, mostrando cómo aprovechar los resultados a casos reales de optimización de trayectorias. • Study of the sensitivity of the solution to the variation of the initial data, and how to use the results to real cases of trajectories’ optimization. • Additionally, from results, it is possible to deduce many properties used in literature to simplify the problem, in particular the invariance property, which leads to a simplified transformed problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Em geral, uma embarcação de planeio é projetada para atingir elevados níveis de velocidade. Esse atributo de desempenho está diretamente relacionado ao porte da embarcação e à potência instalada em sua planta propulsiva. Tradicionalmente, durante o projeto de uma embarcação, as análises de desempenho são realizadas através de resultados de embarcações já existentes, retirados de séries sistemáticas ou de embarcações já desenvolvidas pelo estaleiro e/ou projetista. Além disso, a determinação dos atributos de desempenho pode ser feita através de métodos empíricos e/ou estatísticos, onde a embarcação é representada através de seus parâmetros geométricos principais; ou a partir de testes em modelos em escala reduzida ou protótipos. No caso específico de embarcações de planeio, o custo dos testes em escala reduzida é muito elevado em relação ao custo de projeto. Isso faz com que a maioria dos projetistas não opte por ensaios experimentais das novas embarcações em desenvolvimento. Ao longo dos últimos anos, o método de Savitsky foi largamente utilizado para se realizar estimativas de potência instalada de uma embarcação de planeio. Esse método utiliza um conjunto de equações semi-empíricas para determinar os esforços atuantes na embarcação, a partir dos quais é possível determinar a posição de equilíbrio de operação e a força propulsora necessária para navegar em uma dada velocidade. O método de Savitsky é muito utilizado nas fases iniciais de projeto, onde a geometria do casco ainda não foi totalmente definida, pois utiliza apenas as características geométricas principais da embarcação para realização das estimativas de esforços. À medida que se avança nas etapas de projeto, aumenta o detalhamento necessário das estimativas de desempenho. Para a realização, por exemplo, do projeto estrutural é necessária uma estimativa do campo de pressão atuante no fundo do casco, o qual não pode ser determinado pelo método de Savitsky. O método computacional implementado nesta dissertação, tem o objetivo de determinar as características do escoamento e o campo de pressão atuante no casco de uma embarcação de planeio navegando em águas calmas. O escoamento é determinado através de um problema de valor de contorno, no qual a superfície molhada no casco é considerada um corpo esbelto. Devido ao uso da teoria de corpo esbelto o problema pode ser tratado, separadamente, em cada seção, onde as condições de contorno são forçadamente respeitadas através de uma distribuição de vórtices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The new methods accurately integrate forced and damped oscillators. A family of analytical functions is introduced known as T-functions which are dependent on three parameters. The solution is expressed as a series of T-functions calculating their coefficients by means of recurrences which involve the perturbation function. In the T-functions series method the perturbation parameter is the factor in the local truncation error. Furthermore, this method is zero-stable and convergent. An application of this method is exposed to resolve a physic IVP, modeled by means of forced and damped oscillators. The good behavior and precision of the methods, is evidenced by contrasting the results with other-reputed algorithms implemented in MAPLE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bibliography: leaf 33.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Supported in part by the Department of Energy under contract ENERGY/EY-76-S-02-2383, and submitted in partial fulfillment of the requirements of the Graduate College for the degree of doctor of philosophy."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bibliography: p. 32.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Boussinesq equation appears as the zeroth-order term in the shallow water flow expansion of the non-linear equation describing the flow of fluid in an unconfined aquifer. One-dimensional models based on the Boussinesq equation have been used to analyse tide-induced water table fluctuations in coastal aquifers. Previous analytical solutions for a sloping beach are based on the perturbation parameter, epsilon(N) = alphaepsilon cot beta (in which beta is the beach slope, alpha is the amplitude parameter and epsilon is the shallow water parameter) and are limited to tan(-1) (alphaepsilon) much less than beta less than or equal to pi/2. In this paper, a new higher-order solution to the non-linear boundary value problem is derived. The results demonstrate the significant influence of the higher-order components and beach slope on the water table fluctuations. The relative difference between the linear solution and the present solution increases as 6 and a increase, and reaches 7% of the linear solution. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a parameter, we consider the modified relaxed energy of the liquid crystal system. Each minimizer of the modified relaxed energy is a weak solution to the liquid crystal equilibrium system. We prove the partial regularity of minimizers of the modified relaxed energy. We also prove the existence of infinitely many weak solutions for the special boundary value x.