823 resultados para Boolean Computations


Relevância:

10.00% 10.00%

Publicador:

Resumo:

MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MOTIVATION: Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. RESULTS: In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. AVAILABILITY: Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, with current methods for DNA analysis (Polymerase Chain Reaction with the SGM Plus™ multiplex kit), it is generally not possible to obtain a conventional autosomal DNA profile of the minor contributor if the ratio between the two contributors in a mixture is smaller than 1:10. This is a consequence of the fact that the major contributor's profile 'masks' that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP), linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed elsewhere in literature [1]. The present paper reports on the derivation of an approach for the probabilistic evaluation of DIP-STR profiling results obtained from unbalanced DNA mixtures. The procedure is based on object-oriented Bayesian networks (OOBNs) and uses the likelihood ratio as an expression of the probative value. OOBNs are retained in this paper because they allow one to provide a clear description of the genotypic configuration observed for the mixed stain as well as for the various potential contributors (e.g., victim and suspect). These models also allow one to depict the assumed relevance relationships and perform the necessary probabilistic computations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative or algorithmic trading is the automatization of investments decisions obeying a fixed or dynamic sets of rules to determine trading orders. It has increasingly made its way up to 70% of the trading volume of one of the biggest financial markets such as the New York Stock Exchange (NYSE). However, there is not a signi cant amount of academic literature devoted to it due to the private nature of investment banks and hedge funds. This projects aims to review the literature and discuss the models available in a subject that publications are scarce and infrequently. We review the basic and fundamental mathematical concepts needed for modeling financial markets such as: stochastic processes, stochastic integration and basic models for prices and spreads dynamics necessary for building quantitative strategies. We also contrast these models with real market data with minutely sampling frequency from the Dow Jones Industrial Average (DJIA). Quantitative strategies try to exploit two types of behavior: trend following or mean reversion. The former is grouped in the so-called technical models and the later in the so-called pairs trading. Technical models have been discarded by financial theoreticians but we show that they can be properly cast into a well defined scientific predictor if the signal generated by them pass the test of being a Markov time. That is, we can tell if the signal has occurred or not by examining the information up to the current time; or more technically, if the event is F_t-measurable. On the other hand the concept of pairs trading or market neutral strategy is fairly simple. However it can be cast in a variety of mathematical models ranging from a method based on a simple euclidean distance, in a co-integration framework or involving stochastic differential equations such as the well-known Ornstein-Uhlenbeck mean reversal ODE and its variations. A model for forecasting any economic or financial magnitude could be properly defined with scientific rigor but it could also lack of any economical value and be considered useless from a practical point of view. This is why this project could not be complete without a backtesting of the mentioned strategies. Conducting a useful and realistic backtesting is by no means a trivial exercise since the \laws" that govern financial markets are constantly evolving in time. This is the reason because we make emphasis in the calibration process of the strategies' parameters to adapt the given market conditions. We find out that the parameters from technical models are more volatile than their counterpart form market neutral strategies and calibration must be done in a high-frequency sampling manner to constantly track the currently market situation. As a whole, the goal of this project is to provide an overview of a quantitative approach to investment reviewing basic strategies and illustrating them by means of a back-testing with real financial market data. The sources of the data used in this project are Bloomberg for intraday time series and Yahoo! for daily prices. All numeric computations and graphics used and shown in this project were implemented in MATLAB^R scratch from scratch as a part of this thesis. No other mathematical or statistical software was used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The objective of this research was to evaluate data from a randomized clinical trial that tested injectable diacetylmorphine (DAM) and oral methadone (MMT) for substitution treatment, using a multi-domain dichotomous index, with a Bayesian approach. METHODS Sixty two long-term, socially-excluded heroin injectors, not benefiting from available treatments were randomized to receive either DAM or MMT for 9 months in Granada, Spain. Completers were 44 and data at the end of the study period was obtained for 50. Participants were determined to be responders or non responders using a multi-domain outcome index accounting for their physical and mental health and psychosocial integration, used in a previous trial. Data was analyzed with Bayesian methods, using information from a similar study conducted in The Netherlands to select a priori distributions. On adding the data from the present study to update the a priori information, the distribution of the difference in response rates were obtained and used to build credibility intervals and relevant probability computations. RESULTS In the experimental group (n = 27), the rate of responders to treatment was 70.4% (95% CI 53.287.6), and in the control group (n = 23), it was 34.8% (95% CI 15.354.3). The probability of success in the experimental group using the a posteriori distributions was higher after a proper sensitivity analysis. Almost the whole distribution of the rates difference (the one for diacetylmorphine minus methadone) was located to the right of the zero, indicating the superiority of the experimental treatment. CONCLUSION The present analysis suggests a clinical superiority of injectable diacetylmorphine compared to oral methadone in the treatment of severely affected heroin injectors not benefiting sufficiently from the available treatments. TRIAL REGISTRATION Current Controlled Trials ISRCTN52023186.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A graphical processing unit (GPU) is a hardware device normally used to manipulate computer memory for the display of images. GPU computing is the practice of using a GPU device for scientific or general purpose computations that are not necessarily related to the display of images. Many problems in econometrics have a structure that allows for successful use of GPU computing. We explore two examples. The first is simple: repeated evaluation of a likelihood function at different parameter values. The second is a more complicated estimator that involves simulation and nonparametric fitting. We find speedups from 1.5 up to 55.4 times, compared to computations done on a single CPU core. These speedups can be obtained with very little expense, energy consumption, and time dedicated to system maintenance, compared to equivalent performance solutions using CPUs. Code for the examples is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B 3u←C2H4X̃1 Ag band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2 D4 results to be not as good as those for C2 H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A traditional photonic-force microscope (PFM) results in huge sets of data, which requires tedious numerical analysis. In this paper, we propose instead an analog signal processor to attain real-time capabilities while retaining the richness of the traditional PFM data. Our system is devoted to intracellular measurements and is fully interactive through the use of a haptic joystick. Using our specialized analog hardware along with a dedicated algorithm, we can extract the full 3D stiffness matrix of the optical trap in real time, including the off-diagonal cross-terms. Our system is also capable of simultaneously recording data for subsequent offline analysis. This allows us to check that a good correlation exists between the classical analysis of stiffness and our real-time measurements. We monitor the PFM beads using an optical microscope. The force-feedback mechanism of the haptic joystick helps us in interactively guiding the bead inside living cells and collecting information from its (possibly anisotropic) environment. The instantaneous stiffness measurements are also displayed in real time on a graphical user interface. The whole system has been built and is operational; here we present early results that confirm the consistency of the real-time measurements with offline computations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria in pregnancy forms a substantial part of the worldwide burden of malaria, with an estimated annual death toll of up to 200,000 infants, as well as increased maternal morbidity and mortality. Studies of genetic susceptibility to malaria have so far focused on infant malaria, with only a few studies investigating the genetic basis of placental malaria, focusing only on a limited number of candidate genes. The aim of this study therefore was to identify novel host genetic factors involved in placental malaria infection. To this end we carried out a nested case-control study on 180 Mozambican pregnant women with placental malaria infection, and 180 controls within an intervention trial of malaria prevention. We genotyped 880 SNPs in a set of 64 functionally related genes involved in glycosylation and innate immunity. A SNP located in the gene FUT9, rs3811070, was significantly associated with placental malaria infection (OR = 2.31, permutation p-value = 0.028). Haplotypic analysis revealed a similarly strong association of a common haplotype of four SNPs including rs3811070. FUT9 codes for a fucosyl-transferase that is catalyzing the last step in the biosynthesis of the Lewis-x antigen, which forms part of the Lewis blood group-related antigens. These results therefore suggest an involvement of this antigen in the pathogenesis of placental malaria infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large proportion of the death toll associated with malaria is a consequence of malaria infection during pregnancy, causing up to 200,000 infant deaths annually. We previously published the first extensive genetic association study of placental malaria infection, and here we extend this analysis considerably, investigating genetic variation in over 9,000 SNPs in more than 1,000 genes involved in immunity and inflammation for their involvement in susceptibility to placental malaria infection. We applied a new approach incorporating results from both single gene analysis as well as gene-gene interactionson a protein-protein interaction network. We found suggestive associations of variants in the gene KLRK1 in the single geneanalysis, as well as evidence for associations of multiple members of the IL-7/IL-7R signalling cascade in the combined analysis. To our knowledge, this is the first large-scale genetic study on placental malaria infection to date, opening the door for follow-up studies trying to elucidate the genetic basis of this neglected form of malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To identify the difficulties of families with children and/or adolescents with mental disorder. Method This is an integrative review. In December 2013, an electronic search was performed on Latin American Caribbean Literature on Health Sciences databases (LILACS) and on Electronic Medicus Index of the National Library of Medicine (MEDLINE) indexed in the Health Virtual Library (BVS) using a combination of descriptors and boolean operators as follows: mental disorders and child or adolescent and caregivers and/not health staff. Results 557 studies were identified, of which 15 were selected for this study. The findings indicated difficulties related to the care for or to interaction with children/adolescents with mental disorder. Conclusion The studies revealed difficulties related to everyday practices of care and feelings expressed during care practices, as well as in relationships with children or adolescents with mental disorder.



Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generalization of simple correspondence analysis, for two categorical variables, to multiple correspondence analysis where they may be three or more variables, is not straighforward, both from a mathematical and computational point of view. In this paper we detail the exact computational steps involved in performing a multiple correspondence analysis, including the special aspects of adjusting the principal inertias to correct the percentages of inertia, supplementary points and subset analysis. Furthermore, we give the algorithm for joint correspondence analysis where the cross-tabulations of all unique pairs of variables are analysed jointly. The code in the R language for every step of the computations is given, as well as the results of each computation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of scaling corrections aimed to improve the chi-square approximation of goodness-of-fit test statistics in small samples, large models, and nonnormal data was proposed in Satorra and Bentler (1994). For structural equations models, Satorra-Bentler's (SB) scaling corrections are available in standard computer software. Often, however, the interest is not on the overall fit of a model, but on a test of the restrictions that a null model say ${\cal M}_0$ implies on a less restricted one ${\cal M}_1$. If $T_0$ and $T_1$ denote the goodness-of-fit test statistics associated to ${\cal M}_0$ and ${\cal M}_1$, respectively, then typically the difference $T_d = T_0 - T_1$ is used as a chi-square test statistic with degrees of freedom equal to the difference on the number of independent parameters estimated under the models ${\cal M}_0$ and ${\cal M}_1$. As in the case of the goodness-of-fit test, it is of interest to scale the statistic $T_d$ in order to improve its chi-square approximation in realistic, i.e., nonasymptotic and nonnormal, applications. In a recent paper, Satorra (1999) shows that the difference between two Satorra-Bentler scaled test statistics for overall model fit does not yield the correct SB scaled difference test statistic. Satorra developed an expression that permits scaling the difference test statistic, but his formula has some practical limitations, since it requires heavy computations that are notavailable in standard computer software. The purpose of the present paper is to provide an easy way to compute the scaled difference chi-square statistic from the scaled goodness-of-fit test statistics of models ${\cal M}_0$ and ${\cal M}_1$. A Monte Carlo study is provided to illustrate the performance of the competing statistics.