942 resultados para Bone-marrow macrophages


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal changes within the bone marrow adjacent to osteoarthritic joints are commonly seen on magnetic resonance (MR) images in humans and in dogs. The histological nature of these lesions is poorly known. In this study, we describe the MR imaging of bone marrow lesions adjacent to the stifle joints of dogs with experimental osteoarthritis over 13 months. Histology of the proximal tibia at the end of the study was compared with the last MR imaging findings. In five adult dogs, the left cranial cruciate ligament was transected. Post-operatively, MR imaging was performed at 1, 2, 3, 4, 6, 8, and 13 months. Dogs were euthanised after 13 months and histological specimen of the proximal tibia were evaluated. Bone marrow edema like MR imaging signal changes were seen in every MR examination of all dogs in one or more locations of the proximal tibia and the distal femur. Lesions varied in size and location throughout the whole study with the exception of constantly seen lesions in the epiphyseal and metaphyseal region at the level of the tibial eminence. On histology, hematopoiesis and myxomatous transformation of the bone marrow and/or intertrabecular fibrosis without signs of bone marrow edema were consistent findings in the areas corresponding to the MR imaging signal changes. We conclude that within the bone marrow, zones of increased signal intensity on fat suppressed MR images do not necessarily represent edema but can be due to cellular infiltration. Contrary to humans, hematopoiesis is seen in bone marrow edema-like lesions in this canine model of osteoarthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of the present study was to investigate whether bone marrow-derived cells (BMCs) can be induced to express retinal pigment epithelial (RPE) cell markers in vitro and can home to the site of RPE damage after mobilization and express markers of RPE lineage in vivo. METHODS: Adult RPE cells were cocultured with green fluorescence protein (GFP)-labeled stem cell antigen-1 positive (Sca-1(+)) BMCs for 1, 2, and 3 weeks. Cell morphology and expression of RPE-specific markers and markers for other retinal cell types were studied. Using an animal model of sodium iodate (NaIO(3))-induced RPE degeneration, BMCs were mobilized into the peripheral circulation by granulocyte-colony stimulating factor, flt3 ligand, or both. Immunocytochemistry was used to identify and characterize BMCs in the subretinal space in C57BL/6 wild-type (wt) mice and GFP chimeric mice. RESULTS: In vitro, BMCs changed from round to flattened, polygonal cells and expressed cytokeratin, RPE65, and microphthalmia transcription factor (MITF) when cocultured in direct cell-cell contact with RPE. In vivo, BMCs were identified in the subretinal space as Sca-1(+) or c-kit(+) cells. They were also double labeled for GFP and RPE65 or MITF. These cells formed a monolayer on the Bruch membrane in focal areas of RPE damage. CONCLUSIONS: Thus, it appears that BMCs, when mobilized into the peripheral circulation, can home to focal areas of RPE damage and express cell markers of RPE lineage. The use of endogenous BMCs to replace damaged retinal tissue opens new possibilities for cell replacement therapy in ophthalmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Photodynamic therapy with 5-aminolevulinic acid (5-ALA-PDT) exerts cell type specific effects on target cells. Since chondrocytes were found to be more resistant than osteoblasts to 5-ALA-PDT, the pre-treatment of osteochondral grafts with 5-ALA-PDT may represent a means to devitalize the osseous portion while maintaining functional cartilage. The present study was designed to determine the effects of 5-ALA-PDT in vitro on cell populations residing in skeletal tissues. METHODS: Osteoblasts, fibroblasts, bone marrow cells, and dendritic cells were incubated with 0.5 mM 5-ALA for 4 h. Protoporphyrin IX (PpIX) accumulation and after exposure to light cellular functions were assessed for up to 6 days. RESULTS: Accumulation of PpIX reached a plateau at 0.5 mM in osteoblasts, fibroblasts, and dendritic cells, and at 2.0 mM in bone marrow cells. At 0.5 mM 5-ALA, similar responses to illumination were observed in all cells with a survival rate of less than 12% at a light dose of 20 J/cm(2). The function of osteoblasts (proliferation, levels of mRNA encoding collagen type I, alkaline phosphatase activity) and fibroblasts (proliferation, levels of mRNAs encoding collagens type I and III) was not affected, when the cells were treated with 5-ALA and light doses of < or =10 J/cm(2). Paralleling the reduction of viable cells after 5-ALA-PDT, the capacity of dendritic cells to stimulate T cells in a mixed leukocyte reaction decreased to 4+/-2% at 20 J/cm(2). CONCLUSION: The investigated cell types were sensitive to 5-ALA-PDT and the residual cell debris did not elicit an allogenic response. These findings, together with the resistance of chondrocytes to 5-ALA-PDT, encourage the further investigation of this protocol in the pretreatment of osteochondral allografts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Reversible ischaemia/reperfusion (I/R) liver injury has been used to induce engraftment and hepatic parenchymal differentiation of exogenous beta2-microglubulin(-)/Thy1(+) bone marrow derived cells. AIM: To test the ability of this method of hepatic parenchymal repopulation, theoretically applicable to clinical practice, to correct the metabolic disorder in a rat model of congenital hyperbilirubinaemia. METHODS AND RESULTS: Analysis by confocal laser microscopy of fluorescence labelled cells and by immunohistochemistry for beta2-microglubulin, 72 hours after intraportal delivery, showed engraftment of infused cells in liver parenchyma of rats with I/R, but not in control animals with non-injured liver. Transplantation of bone marrow derived cells obtained from GFP-transgenic rats into Lewis rats resulted in the presence of up to 20% of GFP positive hepatocytes in I/R liver lobes after one month. The repopulation rate was proportional to the number of transplanted cells. Infusion of GFP negative bone marrow derived cells into GFP positive transgenic rats resulted in the appearance of GFP negative hepatocytes, suggesting that the main mechanism underlying parenchymal repopulation was differentiation rather than cell fusion. Transplantation of wild type bone marrow derived cells into hyperbilirubinaemic Gunn rats with deficient bilirubin conjugation after I/R damage resulted in 30% decrease in serum bilirubin, the appearance of bilirubin conjugates in bile, and the expression of normal UDP-glucuronyltransferase enzyme evaluated by polymerase chain reaction. CONCLUSIONS: I/R injury induced hepatic parenchymal engraftment and differentiation into hepatocyte-like cells of bone marrow derived cells. Transplantation of bone marrow derived cells from non-affected animals resulted in the partial correction of hyperbilirubinaemia in the Gunn rat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow transplantation (BMT) is commonly used for the treatment of severe haematological and immunological diseases. For instance, the autoimmune lymphoproliferative syndrome (ALPS) caused by a complete expression defect of CD95 (Fas, APO-1) can be cured by allogeneic BMT. However, since this therapy may not generate satisfactory results when only partially compatible donors are available, we were interested in the development of a potential alternative treatment by using lentiviral gene transfer of a normal copy of CD95 cDNA in hematopoietic stem cells. Here, we show that this approach applied to MRL/lpr mice results in the expression of functional CD95 receptors on the surface of lymphocytes, monocytes, and granulocytes. This suggests that correction of CD95 deficiency can be achieved by gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: MHC-I down-regulation was described in foetal liver progenitors, and two different subsets of adult bone marrow derived stem cells. These cells, namely, MHC-I-/Thy1+ bone marrow derived liver stem cells (BMDLSC) and the multipotent adult progenitors (MAPC) differentiated into functioning hepatocytes. The aim of this paper was to characterize the MHC-I negative bone marrow compartment as it pertains to BMDLSC and MAPC. MATERIAL/METHODS: We performed multiparameter flow-cytometry analyses of the MHC-I negative compartment using hematopoietic (CD45, Ter119), and stem cell markers (Thy1.2, c-Kit, IL-3R, CD34) in adult mice. RESULTS: When analysing CD45 and Ter119 expression, the MHC-I negative bone marrow compartment divides into four sub-populations: 1. CD45-/Ter119+: 86.0+/-4.4%; 2. CD45+/Ter119+: 0.2+/-0.1%; 3. CD45+/Ter119-: 11.6+/-3.0%; 4. CD45-/Ter119-: 2.0+/-2.1%. Stem cells markers were only expressed on MHC-I negative/ CD45+/Ter119- cells. In vivo, MAPC (Ter119-/CD45- cells) are composed of MHC-I negative (24%) and MHC-I positive cells and do not express any of the stem cell markers tested. CONCLUSIONS: In conclusion, mouse BMDLSC and MAPC are two distinct stem cell populations. Down-regulation of MHC-I was the only common characteristic found between BMDLSC and MAPC suggesting that selection of MHC-I negative cells might represent an efficient strategy to enrich for bone marrow stem cells with liver developmental potential.