993 resultados para Body Sensations
Resumo:
Sheep and cattle are frequently subjected to feed and water deprivation (FWD) for about 12 h before, and then during, transport to reduce digesta load in the gastrointestinal tract. This FWD is marked by weight loss as urine and faeces mainly in the first 24 h but continuing at a reduced rate subsequently. The weight of rumen contents falls although water loss is to some extent masked by saliva inflow. FWD is associated with some stress, particularly when transportation is added. This is indicated by increased levels of plasma cortisol that may be partly responsible for an observed increase in the output of water and N in urine and faeces. Loss of body water induces dehydration that may induce feelings of thirst by effects on the hypothalamus structures through the renin-angiotensin-aldosterone system. There are suggestions that elevated cortisol levels depress angiotensin activity and prevent sensations of thirst in dehydrated animals, but further research in this area is needed. Dehydration coupled with the discharge of Na in urine challenges the maintenance of homeostasis. In FWD, Na excretion in urine is reduced and, with the reduction in digesta load, Na is gradually returned from the digestive tract to the extracellular fluid space. Control of enteropathogenic bacteria by normal rumen microbes is weakened by FWD and resulting infections may threaten animal health and meat safety. Recovery time is required after transport to restore full feed intake and to ensure that adequate glycogen is present in muscle pre-slaughter to maintain meat quality.
Resumo:
OBJECTIVE To monitor the seasonal body composition alterations in 18 lightweight rowers (six females, 12 males) across a rowing season incorporating preseason, early competition, competition, and postseason. METHODS Subject age was 23.1 (SD 4.5) years, height 170.8 (5.6) cm (female, 23.5 (3.5) years, 180.5 (2.7) cm (male). Body weight, fat mass, and fat-free mass (FFM) were assessed using dual energy x ray absorptiometry (DXA-L Lunar) and skinfold techniques. Weight control techniques were documented before major regattas by a questionnaire. RESULTS Female body weight was reduced from 61.3 (2.9) to 57.0 (1.1) kg (5.9%), while male body weight was reduced from 75.6 (3.1) to 69.8 (1.6) kg (7.8%) preseason to competition season respectively. These body weight reductions were mirrored by a significant reduction in fat mass as indicated by the sum of skinfolds [female seven sites: 80.9 (8.1) to 68.2 (11.8) mm; male eight sites: 54.2 (8.7) to 41.8 (4.8) mm], percentage body fat [female 22.1 (1.0) to 19.7 (2.4)%; male 10.0 (0.9) to 7.8 (0.8)%], and total fat [female 12.5 (5.2) to 10.9 (1.4) kg; male 7.3 (1.9) to 5.6 (1.8) kg] (DXA). In contrast, no changes were observed in FFM despite a season of intensive rowing training. Seasonal body weight control was achieved through reduced total energy and dietary fat intakes. Acute body weight reductions were achieved by exercise in 73.3% of participants, food restriction in 71.4%, and fluid restrictions in 62.9%. CONCLUSIONS Seasonal body weight alterations in lightweight rowers are in response to a significant reduction in fat mass. However, the weight restrictions appear to be limiting an increase in FFM which could be beneficial to rowing performance.
Resumo:
The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10−8). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
Theory of developmental origins of adult health and disease proposes that experiences during critical periods of early development may have consequences on health throughout a lifespan. Thesis studies aimed to characterize associations between early growth and some components of the metabolic syndrome cluster. Participants belong to two epidemiological cohorts with data on birth measurements and, for the younger cohort, on serial recordings of weight and height during childhood. They were born as singletons between 1924-33 and 1934-44 in the Helsinki University Central Hospital, and 500 and 2003 of them, respectively, attended clinical studies at the age of 65-75 and 56-70 years, respectively. In the 65-75 year old men and women, the well-known inverse relationship between birth weight and systolic blood pressure (SBP) was confined to people who had established hypertension. Among them a 1-kg increase in birth weight was associated with a 6.4-mmHg (95% CI: 1.0 to 11.9) decrease in SBP. This relationship was further confined to people with the prevailing Pro12Pro polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPARγ2) gene. People with low birth weight were more likely to receive angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers (ACEI/ARB, p=0.03), and, again, this relationship was confined to the carriers of the Pro12Pro (p=0.01 for interaction). These results suggest that the inverse association between birth weight and systolic BP becomes focused in hypertensive people because pathological features of BP regulation, associated with slow fetal growth, become self-perpetuating in adult life. Insulin resistance of the Pro12Pro carriers with low birth weight may interact with the renin-angiotensin system leading to raised BP levels. Habitual physical activity protected men and women who were small at birth, and thus at increased risk for the development of type 2 diabetes, against glucose intolerance more strongly. Among subjects with birth weight ≤3000 g, the odds ratio (OR) for glucose intolerance was 5.2 (95% CI: 2.1 to 13) in those who exercised less than 3 times per week compared to regular exercisers; in those who scored their exercise light compared with moderate exercisers (defined as comparable to brisk walking) the OR was 3.5 (1.5 to 8.2). In the 56-70 year old men a 1 kg increase in birth weight corresponded to a 4.1 kg (95% CI: 3.1 to 5.1) and in women to a 2.9 kg (2.1 to 3.6) increase in adult lean mass. Rapid gain in body mass index (BMI), i.e. crossing from an original BMI percentile to a higher one, before the age of 2 years increased adult lean mass index (LMI, lean mass/height squared) without excess fat accumulation whereas rapid gain in BMI during later childhood, despite the concurrent rise in LMI, resulted in a relatively higher increase in adult body fat mass. These findings illustrate how genes, the environment and their interactions, early growth patterns, and adult lifestyle modify adult health risks which originate from early life.
Resumo:
There is evidence across several species for genetic control of phenotypic variation of complex traits1, 2, 3, 4, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using ~170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)5, 6, 7, is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of ~0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation9, 10. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
Resumo:
Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and approximately 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-)(8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
Resumo:
Octahedral Co2+ centers have been connected by mu(3)-OH and mu(2)-OH2 units forming [Co-4] clusters which are linked by pyrazine forming a two-dimensional network. The two-dimensional layers are bridged by oxybisbenzoate (OBA) ligands giving rise to a three-dimensional structure. The [Co-4] clusters bond with the pyrazine and the OBA results in a body-centered arrangement of the clusters, which has been observed for the first time. Magnetic studies reveal a noncollinear frustrated spin structure of the bitriangular cluster, resulting in a net magnetic moment of 1.4 mu B per cluster. For T > 32 K, the correlation length of the cluster moments shows a stretched-exponential temperature dependence typical of a Berezinskii-Kosterlitz-Thouless model, which points to a quasi-2D XY behavior. At lower temperature and down to 14 K, the compound behaves as a soft ferromagnet and a slow relaxation is observed, with an energy barrier of ca. 500 K. Then, on further cooling, a hysteretic behavior takes place with a coercive field that reaches 5 Tat 4 K. The slow relaxation is assigned to the creation/annihilation of vortex-antivortex pairs, which are the elementary excitations of a 2D XY spin system.
Resumo:
Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. in The stability and transition of heated and cooled incompressible laminar boundary layers, in Proceedings of the Fourth International Heat Transfer Conference, Vol. 2, FCI 4. Elsevier, Amsterdam (1970).