976 resultados para Biotechnological applications


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete Markov random field models provide a natural framework for representing images or spatial datasets. They model the spatial association present while providing a convenient Markovian dependency structure and strong edge-preservation properties. However, parameter estimation for discrete Markov random field models is difficult due to the complex form of the associated normalizing constant for the likelihood function. For large lattices, the reduced dependence approximation to the normalizing constant is based on the concept of performing computationally efficient and feasible forward recursions on smaller sublattices which are then suitably combined to estimate the constant for the whole lattice. We present an efficient computational extension of the forward recursion approach for the autologistic model to lattices that have an irregularly shaped boundary and which may contain regions with no data; these lattices are typical in applications. Consequently, we also extend the reduced dependence approximation to these scenarios enabling us to implement a practical and efficient non-simulation based approach for spatial data analysis within the variational Bayesian framework. The methodology is illustrated through application to simulated data and example images. The supplemental materials include our C++ source code for computing the approximate normalizing constant and simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic solar cells based on bulk heterojunction between a conductive polymer and a carbon nanostructure offer potential advantages compared to conventional inorganic cells. Low cost, light weight, flexibility and high peak power per unit weight are all features that can be considered a reality for organic photovoltaics. Although polymer/carbon nanotubes solar cells have been proposed, only low power conversion efficiencies have been reached without addressing the mechanisms responsible for this poor performance. The purpose of this work is therefore to investigate the basic interaction between carbon nanotubes and poly(3-hexylthiophene) in order to demonstrate how this interaction affects the performance of photovoltaic devices. The outcomes of this study are the contributions made to the knowledge of the phenomena explaining the behaviour of electronic devices based on carbon nanotubes and poly(3-hexylthiophene). In this PhD, polymer thin films with the inclusion of uniformly distributed carbon nanotubes were deposited from solution and characterised. The bulk properties of the composites were studied with microscopy and spectroscopy techniques to provide evidence of higher degrees of polymer order when interacting with carbon nanotubes. Although bulk investigation techniques provided useful information about the interaction between the polymer and the nanotubes, clear evidence of the phenomena affecting the heterojunction formed between the two species was investigated at nanoscale. Identifying chirality-driven polymer assisted assembly on the carbon nanotube surface was one of the major achievements of this study. Moreover, the analysis of the electrical behaviour of the heterojunction between the polymer and the nanotube highlighted the charge transfer responsible for the low performance of photovoltaic devices. Polymer and carbon nanotube composite-based devices were fabricated and characterised in order to study their electronic properties. The carbon nanotube introduction in the polymer matrix evidenced a strong electrical conductivity enhancement but also a lower photoconductivity response. Moreover, the extension of pristine polymer device characterisation models to composites based devices evidenced the conduction mechanisms related to nanotubes. Finally, the introduction of carbon nanotubes in the polymer matrix was demonstrated to improve the pristine polymer solar cell performance and the spectral response even though the power conversion efficiency is still too low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel reduced-size microstrip rectangular patch antenna for Bluetooth operation is presented in this paper. The proposed antenna operates in the 2400 to 2484 MHz ISM Band. Although an air substrate is introduced, antenna occupies a small volume of 33.3×6.6×0.8 mm3. The gain and the impedance bandwidth of the antenna are predicted using a commercial Finite Element Method software package. The predicted results show good agreement with measured data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A double-layer rectangular patch microstrip antenna suitable for Bluetooth applications is investigated. The patch is etched on a separate substrate which is suspended above the ground plane and supported by an MCX connector. The air gap between the patch and the ground plane increases the impedance bandwidth and can be used to tune the resonant frequency. This paper presents experimental results on the effects of various parameters on the antenna characteristics and provides guidelines for the design of such an antenna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to present a cost-benefit interpretation of academic-practitioner research by describing and analysing several recent relevant examples of academic-practitioner research with a focus on doctoral theses carried out at universities and business schools in clusters of research centred in North America, Australia and Europe. Design/methodology/approach – Using case study examples, a value proposition framework for undertaking collaborative research for higher degree level study is developed and presented. Findings – Value proposition benefits from this level of collaborative research can be summarised as enhancing competencies at the individual and organisational level as well as providing participating universities with high-quality candidates/students and opportunities for industry engagement. The project management (PM) professional bodies can also extend PM knowledge but they need to be prepared to provide active support. Practical implications – A model for better defining the value proposition of collaborative research from a range of stakeholder perspectives is offered that can be adapted for researchers and industry research sponsors. Originality/value – Few papers offer a value proposition framework for explaining collaborative research benefits. This paper addresses that need.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs), experimentally observed for the first time twenty years ago, have triggered an unprecedented research effort, on the account of their astonishing structural, mechanical and electronic properties. Unfortunately, the current inability in predicting the CNTs’ properties and the difficulty in controlling their position on a substrate are often limiting factors for the application of this material in actual devices. This research aims at the creation of specific methodologies for controlled synthesis of CNTs, leading to effectively employ them in various fields of electronics, e.g. photovoltaics. Focused Ion Beam (FIB) patterning of Si surfaces is here proposed as a means for ordering the assembly of vertical-aligned CNTs. With this technique, substrates with specific nano-structured morphologies have been prepared, enabling a high degree of control over CNTs’ position and size. On these nano-structured substrates, the growth of CNTs has been realized by chemical vapor deposition (CVD), i.e. thermal decomposition of hydrocarbon gases over a heated catalyst. The most common materials used as catalysts in CVD are transition metals like Fe and Ni; however, their presence in the CNT products often results in shortcomings for electronic applications, especially for those based on silicon, being the metallic impurities incompatible with very-large-scale integration (VLSI) technology. In the present work the role of Ge dots as an alternative catalysts for CNTs synthesis on Si substrates has been thoroughly assessed, finding a close connection between the catalytic activity of such material and the CVD conditions, which can affect both size and morphology of the dots. Successful CNT growths from Ge dots have been obtained by CVD at temperatures ranging from 750 to 1000°C, with mixtures of acetylene and hydrogen in an argon carrier gas. The morphology of the Si surface is observed to play a crucial role for the outcome of the CNT synthesis: natural (i.e. chemical etching) and artificial (i.e. FIB patterning, nanoindentation) means of altering this morphology in a controlled way have been then explored to optimize the CNTs yield. All the knowledge acquired in this study has been finally applied to synthesize CNTs on transparent conductive electrodes (indium-tin oxide, ITO, coated glasses), for the creation of a new class of anodes for organic photovoltaics. An accurate procedure has been established which guarantees a controlled inclusion of CNTs on ITO films, preserving their optical and electrical properties. By using this set of conditions, a CNTenhanced electrode has been built, contributing to improve the power conversion efficiency of polymeric solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishing a persistent presence in the ocean with an AUV to observe temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we propose a strategy that utilizes ocean model predictions to increase the autonomy and control of Lagrangian or profiling floats for precisely this purpose. An A* planner is applied to a local controllability map generated from predictions of ocean currents to compute a path between prescribed waypoints that has the highest likelihood of successful execution. The control to follow the planned path is computed by use of a model predictive controller. This controller is designed to select the best depth for the vehicle to exploit ambient currents to reach the goal waypoint. Mission constraints are employed to simulate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, and show surprising results in the ability of a Lagrangian float to reach a desired location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Australian Tax Analysis, seventh edition, provides a comprehensive examination of taxation law with a practical commercial perspective. The seventh edition of this text features: two new chapters: "Offsets" and "Superannuation and Employer Responsibilities"; selected case extracts; Tax Commissioner Rulings; thought-provoking commentary; instruction on how to read the Acts; and engaging problem-based practice questions."--Publisher's website.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel concept of producing high dc voltage for pulsed-power applications is proposed in this paper. The topology consists of an LC resonant circuit supplied through a tuned alternating waveform that is produced by an inverter. The control scheme is based on the detection of variations in the resonant frequency and adjustment of the switching signal patterns for the inverter to produce a square waveform with exactly the same frequencies. Therefore the capacitor voltage oscillates divergently with an increasing amplitude. A simple one-stage capacitor-diode voltage multiplier (CDVM) connected to the resonant capacitor then rectifies the alternating voltage and gives a dc level equal to twice the input voltage amplitude. The produced high voltage appears then in the form of high-voltage pulses across the load. A basic model is simulated by Simulink platform of MATLAB and the results are included in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A practical approach for identifying solution robustness is proposed for situations where parameters are uncertain. The approach is based upon the interpretation of a probability density function (pdf) and the definition of three parameters that describe how significant changes in the performance of a solution are deemed to be. The pdf is constructed by interpreting the results of simulations. A minimum number of simulations are achieved by updating the mean, variance, skewness and kurtosis of the sample using computationally efficient recursive equations. When these criterions have converged then no further simulations are needed. A case study involving several no-intermediate storage flow shop scheduling problems demonstrates the effectiveness of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To cover wide range of pulsed power applications, this paper proposes a modularity concept to improve the performance and flexibility of the pulsed power supply. The proposed scheme utilizes the advantage of parallel and series configurations of flyback modules in obtaining high-voltage levels with fast rise time (dv/dt). Prototypes were implemented using 600-V insulated-gate bipolar transistor (IGBT) switches to generate up to 4-kV output pulses with 1-kHz repetition rate for experimentation. To assess the proposed modular approach for higher number of the modules, prototypes were implemented using 1700-V IGBTs switches, based on ten-series modules, and tested up to 20 kV. Conducted experimental results verified the effectiveness of the proposed method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Woolworths Ltd v Graham [2007] QDC 301 Searles DCJ struck out a pre-proceedings application under the Personal Injuries Proceedings Act 2002 (Qld)on the basis that the material before the Court was not sufficient to attract the jurisdiction of the District Court.The decision serves more broadly as a reminder that the District Court is an inferior court of defined and limited jurisdiction and that any proceedings brought in it must be demonstrably within the jurisdiction conferred on that court by legislation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the author proposed and developed gas sensors made of nanostructured WO3 thin film by a thermal evaporation technique. This technique gives control over film thickness, grain size and purity. The device fabrication, nanostructured material synthesis, characterization and gas sensing performance have been undertaken. Three different types of nanostructured thin films, namely, pure WO3 thin films, iron-doped WO3 thin films by co-evaporation and Fe-implanted WO3 thin films have been synthesized. All the thin films have a film thickness of 300 nm. The physical, chemical and electronic properties of these films have been optimized by annealing heat treatment at 300ºC and 400ºC for 2 hours in air. Various analytical techniques were employed to characterize these films. Atomic Force Microscopy and Transmission Electron Microscopy revealed a very small grain size of the order 5-10 nm in as-deposited WO3 films, and annealing at 300ºC or 400ºC did not result in any significant change in grain size. X-ray diffraction (XRD) analysis revealed a highly amorphous structure of as-deposited films. Annealing at 300ºC for 2 hours in air did not improve crystallinity in these films. However, annealing at 400ºC for 2 hours in air significantly improved the crystallinity in pure and iron-doped WO3 thin films, whereas it only slightly improved the crystallinity of iron-implanted WO3 thin film as a result of implantation. Rutherford backscattered spectroscopy revealed an iron content of 0.5 at.% and 5.5 at.% in iron-doped and iron-implanted WO3 thin films, respectively. The RBS results have been confirmed using energy dispersive x-ray spectroscopy (EDX) during analysis of the films using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) revealed significant lowering of W 4f7/2 binding energy in all films annealed at 400ºC as compared with the as-deposited and 300ºC annealed films. Lowering of W 4f7/2 is due to increase in number of oxygen vacancies in the films and is considered highly beneficial for gas sensing. Raman analysis revealed that 400ºC annealed films except the iron-implanted film are highly crystalline with significant number of O-W-O bonds, which was consistent with the XRD results. Additionally, XRD, XPS and Raman analyses showed no evidence of secondary peaks corresponding to compounds of iron due to iron doping or implantation. This provided an understanding that iron was incorporated in the host WO3 matrix rather than as a separate dispersed compound or as catalyst on the surface. WO3 thin film based gas sensors are known to operate efficiently in the temperature range 200ºC-500 ºC. In the present study, by optimizing the physical, chemical and electronic properties through heat treatment and doping, an optimum response to H2, ethanol and CO has been achieved at a low operating temperature of 150ºC. Pure WO3 thin film annealed at 400ºC showed the highest sensitivity towards H2 at 150ºC due to its very small grain size and porosity, coupled with high number of oxygen vacancies, whereas Fe-doped WO3 film annealed at 400ºC showed the highest sensitivity to ethanol at an operating temperature of 150ºC due to its crystallinity, increased number of oxygen vacancies and higher degree of crystal distortions attributed to Fe addition. Pure WO3 films are known to be insensitive to CO, but iron-doped WO3 thin film annealed at 300ºC and 400ºC showed an optimum response to CO at an operating temperature of 150ºC. This result is attributed to lattice distortions produced in WO3 host matrix as a result of iron incorporation as substitutional impurity. However, iron-implanted WO3 thin films did not show any promising response towards the tested gases as the film structure has been damaged due to implantation, and annealing at 300ºC or 400ºC was not sufficient to induce crystallinity in these films. This study has demonstrated enhanced sensing properties of WO3 thin film sensors towards CO at lower operating temperature, which was achieved by optimizing the physical, chemical and electronic properties of the WO3 film through Fe doping and annealing. This study can be further extended to systematically investigate the effects of different Fe concentrations (0.5 at.% to 10 at.%) on the sensing performance of WO3 thin film gas sensors towards CO.