930 resultados para Bion, of Phlossa near Smyrna.
Resumo:
The Neolithic and Bronze Age transitions were profound cultural shifts catalyzed in parts of Europe by migrations, first of early farmers from the Near East and then Bronze Age herders from the Pontic Steppe. However, a decades-long, unresolved controversy is whether population change or cultural adoption occurred at the Atlantic edge, within the British Isles. We address this issue by using the first whole genome data from prehistoric Irish individuals. A Neolithic woman (3343–3020 cal BC) from a megalithic burial (10.3× coverage) possessed a genome of predominantly Near Eastern origin. She had some hunter–gatherer ancestry but belonged to a population of large effective size, suggesting a substantial influx of early farmers to the island. Three Bronze Age individuals from Rathlin Island (2026–1534 cal BC), including one high coverage (10.5×) genome, showed substantial Steppe genetic heritage indicating that the European population upheavals of the third millennium manifested all of the way from southern Siberia to the western ocean. This turnover invites the possibility of accompanying introduction of Indo-European, perhaps early Celtic, language. Irish Bronze Age haplotypic similarity is strongest within modern Irish, Scottish, and Welsh populations, and several important genetic variants that today show maximal or very high frequencies in Ireland appear at this horizon. These include those coding for lactase persistence, blue eye color, Y chromosome R1b haplotypes, and the hemochromatosis C282Y allele; to our knowledge, the first detection of a known Mendelian disease variant in prehistory. These findings together suggest the establishment of central attributes of the Irish genome 4,000 y ago.
Resumo:
We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.D-0501(A).
Resumo:
The scanning electron microscope (SEM) has been a major tool in detailed morphological observations of plant parasitic nematodes during the last 30 years, efficiently complementing light microscopical (LM) studies. Nematodes are extremely difficult to observe and characterize due to their small size (aprox. 1 mm long) and paucity of morphological characters, so detailed surface observations of several organs and nematode regions are of the highest value. Among plant parasitic nematodes, one of the most devastating species is the “pinewood nematode” (PWN), Bursaphelenchus xylophilus, which has been a major problem for forest species, and in particular pines, in Asia (Japan, China, Korea) and has been recently detected in the European Union (Portugal). B. xylophilus belongs to a closely related, morphologically similar group of species, within the genus Bursaphelenchus, and designated by the “xylophilus group”. SEM has become a crucial tool in observing several genital characters of males and females, such as male genital papillae, male copulatory spicules, female vulval flap and female genital papillae.s In this presentation, we will show how SEM has been utilized to observe and characterize the shape of the vulval flap, the presence/ absence of papillae near the flap, and confirm the presence and the arrangement of the male genital papillae. LM is also used in this work to show its value as a complementary tool to SEM, in both genital characteristics and other, general, characters of the genus Bursaphelenchus, such as the male bursa and cephalic region.
Resumo:
Citrus is grown in Croatia (approximately 1,500 ha of citrus groves) on the Dalmatian Coast and Islands between 42 and 43°30'N. The major species, Citrus unshiu Marc. (Satsuma mandarin), is grafted on trifoliate rootstock. The presence of Citrus tristeza virus (CTV) in Satsumas in the Neretva Valley Region was previously reported (3). During the course of a biomolecular characterization of isolates from Croatia, 15 budsticks were collected from field- infected, enzyme-linked immunosorbent assay (ELISA)-positive sources during the autumn of 2003 near Kaštela, Split, Metković (Neretva Valley), and on the island of Vis. Isolates were propagated by graft transmission to Madam Vinous sweet orange (SwO) and maintained in an insect-proof greenhouse at 21 to 33° C.
Resumo:
Alloxan induced diabetic animal model was used to evaluate the antidiabetic effect of alkaloids extracted from the leaves of Aegis marine/ose. The alkaloid extract maintained the weight of animals near to that of control ones - whereas there was a decrease in the body weight of diabetic animals. A significant increase in blood glucose (342. 14 -+- 14.89 mg/dl) was seen in diabetic animals but in alkaloid treated group the blood glucose was lowered (90: 12 +_5.81 mg/dl). There was no decrease in blood urea arid sreum cholesterol in the alkaloid treated group of diabetic animals. The liver glycogen decreased in diabetic animals (1.27+.12 g/100g of wet tissue) and the treatment brought the glycogen level to that of control ones (2.51 +.75 g/100 g of wet tissue). The result show that the alkaloid extract has hypoglycaemic activity.
Resumo:
The deteriorating air quality especially in urban environments is a cause of serious concern. In spite of being an effective sink, the atmosphere also has its own limitations in effectively dispersing the pollutants being dumped into it continuously by various sources, mainly industries. Many a time, it is not the higher emissions that cause alarming level of pollutants but the unfavourable atmospheric conditions under which the atmosphere is not able to disperse them effectively, leading to accumulation of pollutants near the ground. Hence, it is imperative to have an estimate of the atmospheric potential for dispersal of the substances emitted into it. This requires a knowledge of mixing height, ventilation coefficient, wind and stability of the region under study. Mere estimation of such pollution potential is not adequate, unless the probable distribution of concentration of pollutants is known. This can be obtained by means of mathematical models. The pollution potential coupled with the distribution of concentration provides a good basis for initiating steps to mitigate air pollution in any developing urban area. In this thesis, a fast developing industrial city, namely, Trivandrum is chosen for estimating the pollution potential and determining the spatial distribution of sulphur dioxide concentration. Each of the parameters required for pollution potential is discussed in detail separately. The thesis is divided into nine chapters.
Resumo:
Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5 J kg 1 K 1 was observed near 300 K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62K at 280 K
Resumo:
The tubular structures, which transport essential gases, liquids, or cells from one site to another, are shared among various divergent organisms. These highly organized tubular networks include lung, kidney, vasculature and mammary gland in mammals as well as trachea and salivary gland in Drosophila melanogaster. Many questions regarding the tubular morphogenesis cannot be addressed sufficiently by investigating the mammalian organs because their structures are extremely complex and therefore, systematic analyses of genetic and cellular programs guiding the development is not possible. In contrast, the Drosophila tracheal development provides an excellent model system since many molecular markers and powerful tools for genetic manipulations are available. Two mechanisms were shown to be important for the outgrowth of tracheal cells: the FGF signaling pathway and the interaction between the tracheal cells and the surrounding mesodermal cells. The Drosophila FGF ligand encoded by branchless (bnl) is localized in groups of cells near tracheal metameres. The tracheal cells expressing the FGF receptor breathless (btl) respond to these sources of FGF ligand and extend towards them. However, this FGF signaling pathway is not sufficient for the formation of continuous dorsal trunk, the only muticellular tube in tracheal system. Recently, it was found out that single mesodermal cells called bridge-cells are essential for the formation of continuous dorsal trunk as they direct the outgrowth of dorsal trunk cells towards the correct targets. The results in this PhD thesis demonstrate that a cell adhesion molecule Capricious (Caps), which is specifically localized on the surface of bridge-cells, plays an essential role in guiding the outgrowing dorsal trunk cells towards their correct targets. When caps is lacking, some bridge-cells cannot stretch properly towards the adjacent posterior tracheal metameres and thus fail to interconnect the juxtaposing dorsal trunk cells. Consequently, discontinuous dorsal trunks containing interruptions at several positions are formed. On the other hand, when caps is ectopically expressed in the mesodermal cells through a twi-GAL4 driver, these mesodermal cells acquire a guidance function through ectopic caps and misguide the outgrowing dorsal trunk cells in abnormal directions. As a result, disconnected dorsal trunks are formed. These loss- and gain-of-function studies suggest that Caps presumably establishes the cell-to-cell contact between the bridge-cells and the tracheal cells and thereby mediates directly the guidance function of bridge-cells. The most similar protein known to Caps is another cell adhesion molecule called Tartan (Trn). Interestingly, trn is expressed in the mesodermal cells but not in the bridge-cells. When trn is lacking, the outgrowth of not only the dorsal trunks but also the lateral trunks are disrupted. However, in contrast to the ectopic expression of caps, the misexpression of trn does not affect tracheal development. Whereas Trn requires only its extracellular domain to mediate the matrix function, Caps requires both its extracellular and intracellular domains to function as a guidance molecule in the bridge-cells. These observations suggest that Trn functions differently from Caps during tracheal morphogenesis. Presumably, Trn mediates a matrix function of mesodermal cells, which support the tracheal cells to extend efficiently through the surrounding mesodermal tissue. In order to determine which domains dictate the functional specificity of Caps, two hybrid proteins CapsEdTrnId, which contains the Caps extracellular domain and the Trn intracellular domain, and TrnEdCapsId, which consists of the Trn extracellular domain and the Caps intracellular domain, were constructed. Gain of function and rescue experiments with these hybrid proteins suggest on one hand that the extracellular domains of Caps and Trn are functionally redundant and on the other hand that the intracellular domain dictates the functional specificity of Caps. In order to identify putative interactors of Caps, yeast two-hybrid screening was performed. An in vivo interaction assay in yeast suggests that Ras64B interacts specifically with the Caps intracellular domain. In addition, an in vitro binding assay reveals a direct interaction between an inactive form of Ras64B and the Caps intracellular domain. ras64B, which encodes a small GTPase, is expressed in the mesodermal cells concurrently as caps. Finally, a gain-of-function study with the constitutively active Ras64B suggests that Ras64B presumably functions downstream of Caps. All these results suggest consistently that the small GTPase Ras64B binds specifically to the Caps intracellular domain and may thereby mediate the guidance function of Caps.
Resumo:
The Sustainably Managing Environmental Health Risk in Ecuador project was launched in 2004 as a partnership linking a large Canadian university with leading Cuban and Mexican institutes to strengthen the capacities of four Ecuadorian universities for leading community-based learning and research in areas as diverse as pesticide poisoning, dengue control, water and sanitation, and disaster preparedness. By 2009, train-the-trainer project initiation involved 27 participatory action research Master’s theses in 15 communities where 1200 community learners participated in the implementation of associated interventions. This led to establishment of innovative Ecuadorian-led master’s and doctoral programs, and a Population Health Observatory on Collective Health, Environment and Society for the Andean region based at the Universidad Andina Simon Bolivar. Building on this network, numerous initiatives were begun, such as an internationally funded research project to strengthen dengue control in the coastal community of Machala, and establishment of a local community eco-health centre focusing on determinants of health near Cuenca. Alliances of academic and non-academic partners from the South and North provide a promising orientation for learning together about ways of addressing negative trends of development. Assessing the impacts and sustainability of such processes, however, requires longer term monitoring of results and related challenges.
Resumo:
Across Europe, elevated phosphorus (P) concentrations in lowland rivers have made them particularly susceptible to eutrophication. This is compounded in southern and central UK by increasing pressures on water resources, which may be further enhanced by the potential effects of climate change. The EU Water Framework Directive requires an integrated approach to water resources management at the catchment scale and highlights the need for modelling tools that can distinguish relative contributions from multiple nutrient sources and are consistent with the information content of the available data. Two such models are introduced and evaluated within a stochastic framework using daily flow and total phosphorus concentrations recorded in a clay catchment typical of many areas of the lowland UK. Both models disaggregate empirical annual load estimates, derived from land use data, as a function of surface/near surface runoff, generated using a simple conceptual rainfall-runoff model. Estimates of the daily load from agricultural land, together with those from baseflow and point sources, feed into an in-stream routing algorithm. The first model assumes constant concentrations in runoff via surface/near surface pathways and incorporates an additional P store in the river-bed sediments, depleted above a critical discharge, to explicitly simulate resuspension. The second model, which is simpler, simulates P concentrations as a function of surface/near surface runoff, thus emphasising the influence of non-point source loads during flow peaks and mixing of baseflow and point sources during low flows. The temporal consistency of parameter estimates and thus the suitability of each approach is assessed dynamically following a new approach based on Monte-Carlo analysis. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present the first observational evidence of the near-Sun distortion of the leading edge of a coronal mass ejection (CME) by the ambient solar wind into a concave structure. On 2007 November 14, a CME was observed by coronagraphs onboard the STEREO-B spacecraft, possessing a circular cross section. Subsequently the CME passed through the field of view of the STEREO-B Heliospheric Imagers where the leading edge was observed to distort into an increasingly concave structure. The CME observations are compared to an analytical flux rope model constrained by a magnetohydrodynamic solar wind solution. The resultant bimodal speed profile is used to kinematically distort a circular structure that replicates the initial shape of the CME. The CME morphology is found to change rapidly over a relatively short distance. This indicates an approximate radial distance in the heliosphere where the solar wind forces begin to dominate over the magnetic forces of the CME influencing the shape of the CME.
Resumo:
Infrared spectra of the two stretching fundamentals of both HBS and DBS have been observed, using a continuous flow system through a multiple reflection long path cell at a pressure around 1 Torr and a Nicolet Fourier Transform spectrometer with a resolution of about 0•1 cm-1. The v3 BS stretching fundamental of DBS, near 1140 cm-1, is observed in strong Fermi resonance with the overtone of the bend 2v2. The bending fundamental v2 has not been observed and must be a very weak band. The analysis of the results in conjunction with earlier work gives the equilibrium structure (re(BH) = 1•1698(12) , re(BS) = 1•5978(3) ) and the harmonic and anharmonic force field.
Resumo:
The microwave spectrum of 1-pyrazoline has been observed from 18 to 40 GHz in the six lowest states of the ring-puckering vibration. It is an a-type spectrum of a near oblate asymmetric top. Each vibrational state has been fitted to a separate effective Hamiltonian, and the vibrational dependence of both the rotational constants and the quartic centrifugal distortion constants has been observed and analyzed. The v = 0 and 1 states have also been analyzed using a coupled Hamiltonian; this gives consistent results, with an improved fit to the high J data. The preferred choice of Durig et al. [J. Chem. Phys. 52, 6096 (1970)] for the ring-puckering potential is confirmed as essentially correct, but the A and B inertial axes are shown to be interchanged from those assumed by Durig et al. in their analysis of the mid-infrared spectrum.
Resumo:
The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (lambda, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966-1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of lambda near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.
Resumo:
Mitochondrial DNA (mtDNA) is one of the most Popular population genetic markers. Its relevance as an indicator Of Population size and history has recently been questioned by several large-scale studies in animals reporting evidence for recurrent adaptive evolution, at least in invertebrates. Here we focus on mammals, a more restricted taxonomic group for which the issue of mtDNA near neutrality is crucial. By analyzing the distribution of mtDNA diversity across species and relating 4 to allozyme diversity, life-history traits, and taxonomy, we show that (i) mtDNA in mammals (toes not reject the nearly neutral model; (ii) mtDNA diversity, however, is unrelated to any of the 14 life-history and ecological variables that we analyzed, including body mass, geographic range, and The World Conservation Union (IUCN) categorization; (iii) mtDNA diversity is highly variable between mammalian orders and families; (iv) this taxonomic effect is most likely explained by variations of mutation rate between lineages. These results are indicative of a strong stochasticity of effective population size in mammalian species. They Suggest that, even in the absence of selection, mtDNA genetic diversity is essentially unpredictable, knowing species biology, and probably uncorrelated to species abundance.