944 resultados para Biomedical imaging and visualization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PhD thesis in Biomedical Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To assess the cardiovascular features of Ullrich-Turner's syndrome using echocardiography and magnetic resonance imaging, and to correlate them with the phenotype and karyotype of the patients. The diagnostic concordance between the 2 methods was also assessed. METHODS: Fifteen patients with the syndrome were assessed by echocardiography and magnetic resonance imaging (cardiac chambers, valves, and aorta). Their ages ranged from 10 to 28 (mean of 16.7) years. The karyotype was analyzed in 11 or 25 metaphases of peripheral blood lymphocytes, or both. RESULTS: The most common phenotypic changes were short stature and spontaneous absence of puberal development (100%); 1 patient had a cardiac murmur. The karyotypes detected were as follows: 45,X (n=7), mosaics (n=5), and deletions (n=3). No echocardiographic changes were observed. In regard to magnetic resonance imaging, coarctation and dilation of the aorta were found in 1 patient, and isolated dilation of the aorta was found in 4 patients. CONCLUSION: The frequencies of coarctation and dilation of the aorta detected on magnetic resonance imaging were similar to those reported in the literature (5.5% to 20%, and 6.3% to 29%, respectively). This confirmed the adjuvant role of magnetic resonance imaging to Doppler echocardiography for diagnosing cardiovascular alterations in patients with Ullrich-Turner's syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to illustrate the chest radiographs (CR) and CT imaging features and sequential findings of cavitary necrosis in complicated childhood pneumonia. Among 30 children admitted in the Pediatric Intensive Care Unit for persistent or progressive pneumonia, respiratory distress or sepsis despite adequate antibiotic therapy, a study group of 9 children (5 girls and 4 boys; mean age 4 years) who had the radiographic features and CT criteria for cavitary necrosis complicated pneumonia was identified. The pathogens identified were Streptococcus pneumoniae( n=4), Aspergillus( n=2), Legionella( n=1), and Staphylococcus aureus( n=1). Sequential CR and CT scans were retrospectively reviewed. Follow-up CR and CT were evaluated for persistent abnormalities. Chest radiographs showed consolidations in 8 of the 9 patients. On CT examination, cavitary necrosis was localized to 1 lobe in 2 patients and 7 patients showed multilobar or bilateral areas of cavitary necrosis. In 3 patients of 9, the cavitary necrosis was initially shown on CT and visualization by CR was delayed by a time span varying from 5 to 9 days. In all patients with cavities, a mean number of five cavities were seen on antero-posterior CR, contrasting with the multiple cavities seen on CT. Parapneumonic effusions were shown by CR in 3 patients and in 5 patients by CT. Bronchopleural fistulae were demonstrated by CT alone ( n=3). No purulent pericarditis was demonstrated. The CT scan displayed persistent residual pneumatoceles of the left lower lobe in 2 patients. Computed tomography is able to define a more specific pattern of abnormalities than conventional CR in children with necrotizing pneumonia and allows an earlier diagnosis of this rapidly progressing condition. Lung necrosis and cavitation may also be associated with Aspergillus or Legionella pneumonia in the pediatric population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary MR imaging is a promising noninvasive technique for the combined assessment of coronary artery anatomy and function. Anomalous coronary arteries and aneurysms can reliably be assessed in clinical practice using coronary MR imaging and the presence of significant left main or proximal multivessel coronary artery disease detected. Technical challenges that need to be addressed are further improvements in motion suppression and abbreviated scanning times aimed at improving spatial resolution and patient comfort. The development of new and specific contrast agents, high-field MR imaging with improved spatial resolution, and continued progress in MR imaging methods development will undoubtedly lead to further progress toward the noninvasive and comprehensive assessment of coronary atherosclerotic disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Both non-traumatic and traumatic spinal cord injuries have in common that a relatively minor structural lesion can cause profound sensorimotor and autonomous dysfunction. Besides treating the cause of the spinal cord injury the main goal is to restore lost function as far as possible. AIM: This article provides an overview of current innovative diagnostic (imaging) and therapeutic approaches (neurorehabilitation and neuroregeneration) aiming for recovery of function after non-traumatic and traumatic spinal cord injuries. MATERIAL AND METHODS: An analysis of the current scientific literature regarding imaging, rehabilitation and rehabilitation strategies in spinal cord disease was carried out. RESULTS: Novel magnetic resonance imaging (MRI) based techniques (e.g. diffusion-weighted MRI and functional MRI) allow visualization of structural reorganization and specific neural activity in the spinal cord. Robotics-driven rehabilitative measures provide training of sensorimotor function in a targeted fashion, which can even be continued in the homecare setting. From a preclinical point of view, defined stem cell transplantation approaches allow for the first time robust structural repair of the injured spinal cord. CONCLUSION: Besides well-established neurological and functional scores, MRI techniques offer the unique opportunity to provide robust and reliable "biomarkers" for restorative therapeutic interventions. Function-oriented robotics-based rehabilitative interventions alone or in combination with stem cell based therapies represent promising approaches to achieve substantial functional recovery, which go beyond current rehabilitative treatment efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different interferometric techniques were developed last decade to obtain full field, quantitative, and absolute phase imaging, such as phase-shifting, Fourier phase microscopy, Hilbert phase microscopy or digital holographic microscopy (DHM). Although, these techniques are very similar, DHM combines several advantages. In contrast, to phase shifting, DHM is indeed capable of single-shot hologram recording allowing a real-time absolute phase imaging. On the other hand, unlike to Fourier phase or Hilbert phase microscopy, DHM does not require to record in focus images of the specimen on the digital detector (CCD or CMOS camera), because a numerical focalization adjustment can be performed by a numerical wavefront propagation. Consequently, the depth of view of high NA microscope objectives is numerically extended. For example, two different biological cells, floating at different depths in a liquid, can be focalized numerically from the same digital hologram. Moreover, the numerical propagation associated to digital optics and automatic fitting procedures, permits vibrations insensitive full- field phase imaging and the complete compensation for a priori any image distortion or/and phase aberrations introduced for example by imperfections of holders or perfusion chamber. Examples of real-time full-field phase images of biological cells have been demonstrated. ©2008 COPYRIGHT SPIE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) is a technique that allows obtaining, from a single recorded hologram, quantitative phase image of living cell with interferometric accuracy. Specifically the optical phase shift induced by the specimen on the transmitted wave front can be regarded as a powerful endogenous contrast agent, depending on both the thickness and the refractive index of the sample. Thanks to a decoupling procedure cell thickness and intracellular refractive index can be measured separately. Consequently, Mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), two highly relevant clinical parameters, have been measured non-invasively at a single cell level. The DHM nanometric axial and microsecond temporal sensitivities have permitted to measure the red blood cell membrane fluctuations (CMF) on the whole cell surface. ©2009 COPYRIGHT SPIE--The International Society for Optical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a global approach combining fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and fluorescence resonance energy transfer (FRET), we address the behavior in living cells of the peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptors involved in lipid and glucose metabolism, inflammation control, and wound healing. We first demonstrate that unlike several other nuclear receptors, PPARs do not form speckles upon ligand activation. The subnuclear structures that may be observed under some experimental conditions result from overexpression of the protein and our immunolabeling experiments suggest that these structures are subjected to degradation by the proteasome. Interestingly and in contrast to a general assumption, PPARs readily heterodimerize with retinoid X receptor (RXR) in the absence of ligand in living cells. PPAR diffusion coefficients indicate that all the receptors are engaged in complexes of very high molecular masses and/or interact with relatively immobile nuclear components. PPARs are not immobilized by ligand binding. However, they exhibit a ligand-induced reduction of mobility, probably due to enhanced interactions with cofactors and/or chromatin. Our study draws attention to the limitations and pitfalls of fluorescent chimera imaging and demonstrates the usefulness of the combination of FCS, FRAP, and FRET to assess the behavior of nuclear receptors and their mode of action in living cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital holography microscopy (DHM) is an optical microscopy technique which allows recording non-invasively the phase shift induced by living cells with nanometric sensitivity. Here, we exploit the phase signal as an indicator of dry mass (related to the protein concentration). This parameter allows monitoring the protein production rate and its evolution during the cell cycle. ©2008 COPYRIGHT SPIE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MR connectomics is an emerging framework in neuro-science that combines diffusion MRI and whole brain tractography methodologies with the analytical tools of network science. In the present work we review the current methods enabling structural connectivity mapping with MRI and show how such data can be used to infer new information of both brain structure and function. We also list the technical challenges that should be addressed in the future to achieve high-resolution maps of structural connectivity. From the resulting tremendous amount of data that is going to be accumulated soon, we discuss what new challenges must be tackled in terms of methods for advanced network analysis and visualization, as well data organization and distribution. This new framework is well suited to investigate key questions on brain complexity and we try to foresee what fields will most benefit from these approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To investigate magnetization transfer (MT) effects as a new source of contrast for imaging and tracking of peripheral foot nerves. MATERIALS AND METHODS: Two sets of 3D spoiled gradient-echo images acquired with and without a saturation pulse were used to generate MT ratio (MTR) maps of 260 μm in-plane resolution for eight volunteers at 3T. Scan parameters were adjusted to minimize signal loss due to T2 dephasing, and a dedicated coil was used to improve the inherently low signal-to-noise ratio of small voxels. Resulting MTR values in foot nerves were compared with those in surrounding muscle tissue. RESULTS: Average MTR values for muscle (45.5 ± 1.4%) and nerve (21.4 ± 3.1%) were significantly different (P < 0.0001). In general, the difference in MTR values was sufficiently large to allow for intensity-based segmentation and tracking of foot nerves in individual subjects. This procedure was termed MT-based 3D visualization. CONCLUSION: The MTR serves as a new source of contrast for imaging of peripheral foot nerves and provides a means for high spatial resolution tracking of these structures. The proposed methodology is directly applicable on standard clinical MR scanners and could be applied to systemic pathologies, such as diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor Endothelial Marker-1 (TEM1/CD248) is a tumor vascular marker with high therapeutic and diagnostic potentials. Immuno-imaging with TEM1-specific antibodies can help to detect cancerous lesions, monitor tumor responses, and select patients that are most likely to benefit from TEM1-targeted therapies. In particular, near infrared(NIR) optical imaging with biomarker-specific antibodies can provide real-time, tomographic information without exposing the subjects to radioactivity. To maximize the theranostic potential of TEM1, we developed a panel of all human, multivalent Fc-fusion proteins based on a previously identified single chain antibody (scFv78) that recognizes both human and mouse TEM1. By characterizing avidity, stability, and pharmacokinectics, we identified one fusion protein, 78Fc, with desirable characteristics for immuno-imaging applications. The biodistribution of radiolabeled 78Fc showed that this antibody had minimal binding to normal organs, which have low expression of TEM1. Next, we developed a 78Fc-based tracer and tested its performance in different TEM1-expressing mouse models. The NIR imaging and tomography results suggest that the 78Fc-NIR tracer performs well in distinguishing mouse- or human-TEM1 expressing tumor grafts from normal organs and control grafts in vivo. From these results we conclude that further development and optimization of 78Fc as a TEM1-targeted imaging agent for use in clinical settings is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-sectional imaging techniques such as magnetic resonance imaging and ultrasound are becoming essential tools not only for making an early diagnosis of rheumatoid arthritis, but also to help clarify the prognosis of the disease and better assess the response to various therapies. This article summarises the recommendations established in 2013 by the European League Against Rheumatism on the role of imaging in the diagnosis and follow-up of rheumatoid arthritis, while adding comments and emphasising on our Swiss experience with the use of ultrasound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.