966 resultados para Biogeochemical flux in the deep sea
Clay mineralogy of sediments of the deep sea sediment trap FS-2, Fram Strait (Appendix A1.3, A5.2.3)
Resumo:
The IMAGES core MD99-2343, recovered from a sediment drift north of the island of Minorca, in the north-western Mediterranean Sea, holds a high-resolution sequence that is perfectly suited to study the oscillations of the overturning system of the Western Mediterranean Deep Water (WMDW). Detailed analysis of grain-size and bulk geochemical composition reveals the sensitivity of this region to climate changes at both orbital and centennial-millennial temporal scales during the last 50 kyr. The dominant orbital pattern in the K/Al record indicates that sediment supply to the basin was controlled by the insolation evolution at 40°N, which forced changes in the fluvial regime, with more efficient sediment transport during insolation maxima. This orbital control also modulated the long-term pattern of the WMDW intensity as illustrated by the silt/clay ratio. However, deep convection was particularly sensitive to climatic changes at shorter time-scales, i.e. to centennial-millennial glacial and Holocene oscillations that are well documented by all the paleocurrent intensity proxies (Si/Al, Ti/Al and silt/clay ratios). Benthic isotopic records (d13C and d18O) show a Dansgaard-Oeschger (D-O) pattern of variability of WMDW properties, which can be associated with changing intensities of the deep currents system. The most prominent reduction on the WMDW overturning was caused by the post-glacial sea level rise. Three main scenarios of WMDW overturning are revealed: a strong mode during D-O Stadials, a weak mode during D-O Interstadials and an intermediate mode during cooling transitions. In addition, D-O Stadials associated with Heinrich events (HEs) have a very distinct signature as the strong mode of circulation, typical for the other D-O Stadials, was never reached during HE due to the surface freshening induced by the inflowing polar waters. Consequently, the WMDW overturning system oscillated around the intermediate mode of circulation during HE. Though surface conditions were more stable during the Holocene, the WMDW overturning cell still reacted synchronously to short-lived events, as shown by increments in the planktonic d18O record, triggering quick reinforcements of the deep water circulation. Overall, these results highlight the sensitivity of the WMDW to rapid climate change which in the recent past were likely induced by oceanographic and atmospheric reorganizations in the North Atlantic region.
Resumo:
The abundance and isotopic composition of rare gas in the mantle provides an important constraint on the origin and evolution of the Earth's atmosphere. One of sources of such information is basalts which erupted from ocean ridges. Ozima (1975, doi:10.1016/0016-7037(75)90054-X) stated that a high 40Ar/36Ar ratio in the mantle suggests sudden degassing at an early stage of the Earth's evolution. Several authors (Funkhouser et al., 1968, doi:10.1016/S0012-821X(68)80021-4; Darlymple and Moor, 1968, doi:10.1126/science.161.3846.1132) have reported excess 40Ar and high 40Ar/36Ar ratios in rapidly quenched rims of young deep-sea basalts. However, the Ar composition in old ridge basalts was not known. We report here a measurement of the isotopic composition of Ar in old deep-sea basalts. The Glomar Challenger drilled a Cretaceous ocean floor near the southern end of the Bermuda Rise in Deep Sea Drilling Project. The drilled site (Site 417) is on the magnetic anomaly MO which has been estimated to be 108 Myr old.
Resumo:
Sediment trap moorings deployed during 1997 and 1998 in the Subantarctic to Polar Frontal regions of the Southern Ocean reveal distinct seasonality in foraminiferal flux. Foraminiferal assemblages vary between each site, yet major species exhibit very similar patterns of seasonal succession which can be associated with changes in mixed layer depth. Enhanced foraminiferal productivity is also associated with periods of high biogenic silica and particulate organic carbon flux. On a broader scale, foraminiferal assemblages are strongly delineated by temperature. Temperature estimates derived from the assemblages using the modern analog technique (MAT) are mostly within 2.5°C of the satellite advanced very high resolution radiometer temperatures observed during the deployment period. This indicates that core top sediments included in the MAT database do reflect modern observed conditions at the sea surface, providing a robust technique for estimating past temperature change from foraminiferal assemblages in Southern Ocean environments.
Resumo:
Following the extreme low ice year of 2007, primary production and the sinking export of particulate and gel-like organic material, using short-term particle interceptor traps deployed at 100 m, were measured in the southeastern Beaufort Sea during summer 2008. The combined influence of early ice retreat and coastal upwelling contributed to exceptionally high primary production (500 ± 312 mg C/m**2/day, n = 7), dominated by large cells (>5 µm, 73% ± 15%, n = 7). However, except for one station located north of Cape Bathurst, the sinking export of particulate organic carbon (POC) was relatively low (range: 38-104 mg C/m**2/day, n = 12) compared to other productive Arctic shelves. Estimates indicate that 80% ± 20% of the primary production was cycled through large copepods or the microbial food web. Exopolymeric substances were abundant in the sinking material but did not appear to accelerate POC sinking export. The use of isotopic signatures (d13C, d15N) and carbon/nitrogen ratios to identify sources of the sinking material was successful only at two stations with a strong marine or terrestrial signature, indicating the limitations of this approach in hydrographically and biologically complex Arctic coastal waters such as in the Beaufort Sea. At these two stations influenced by either coastal upwelling or erosion, the composition and magnitude of particulate sinking fluxes were markedly different from other stations visited during the study. These observations underscore the fundamental role of mesoscale circulation patterns and hydrodynamic singularities on the export of particulate organic material on Arctic shelves.
Resumo:
Stable isotope analyses of marine bivalve growth increment samples have been used to estimate early Oligocene (29.4 - 31.2) Ma and early Miocene (24.0 Ma) seafloor palaeotemperature from the southwestern continental margin of the Ross Sea. Measured d18O values average +2.5 ? in the early Miocene and range between +1.26 to +3.24 ? in the early Oligocene. The results show that palaeoceanographic conditions in McMurdo Sound during the mid-Cenozoic were significantly different from those of today. The minimum estimated spring through late summer seasonal temperature range was 3°C during the early Miocene and between 1 and 5°C during the early Oligocene. This compares to the equivalent modern day range of <0.5°C within the sound. Absolute seawater temperatures at <100 m depth were of the order of 5 to 7°C during both time slices, compared to modern day values of -1.4 to - 1.9°C in the same area. The results are in broad agreement with early Oligocene Mg/Ca temperature estimates from deep Atlantic foraminifera as well as estimates from local terrestrial palynology and palaeobotany.
Resumo:
Iron and manganese in bottom sediments studied along the sublatitudinal transect from Kandalaksha to Arkhangelsk are characterized by various contents and speciations depending on sedimentation environment, grain size of sediments, and diagenetic processes. The latter include redistribution of reactive forms leading to enrichment in Fe and Mn of surface sediments, formation of films, incrustations, and ferromanganese nodules. Variations in total Fe content (2-8%) are accompanied by changes in concentration of its reactive forms (acid extraction) and concentration of dissolved Fe in interstitial waters (1-14 µM). Variations in Mn content in bottom sediments (0.03-3.7%) and interstitial waters (up to 500 µM) correspond to high diagenetic mobility of this element. Changes in oxidation degree of chemical elements result in redox stratification of sediment strata with maximum concentrations of Fe, Mn, and sulfides. Organic matter of bottom sediments with considerable terrestrial constituent is oxidized by bottom water oxygen mainly at the sediment surface or in anaerobic conditions within the sediment strata. The role of inorganic components in organic matter oxidation changes from surface layer bottom sediments (where manganese oxyhydroxide dominates among oxidants) to deeper layers (where sulfate of interstitial water serves as the main oxidant). Differences in river runoff and hydrodynamics are responsible for geochemical asymmetry of the transect. The deep Kandalaksha Bay serves as a sediment trap for manganese (Mn content in sediments varies within 0.5-0.7%), whereas the sedimentary environment in the Dvina Bay promotes its removal from bottom sediments (Mn 0.05%).
Resumo:
Biostratigraphy and paleoenvironmental history of deep and surficial waters of the Japan Sea are addressed using sequences recovered from the floor of the backarc basin. The study is divided into two parts: (1) foraminifer biostratigraphy and paleoenvironmental assessment of sedimentary sequences recovered from above igneous basement at the four sites and (2) detailed planktonic foraminifer paleoenvironmental analysis of Quaternary and Pliocene sequences from Sites 794 and 797 in the Yamato Basin. A total of 253 samples were examined for the foraminifer biostratigraphy and 325 samples for the detailed paleoenvironmental study of Quaternary and Pliocene sequences. Low abundance and sporadic occurrence of foraminifers limited interpretation of results. Foraminifer-bearing intervals were correlated where possible to diatom and calcareous nannofossil zonations, and the sequences were successfully assigned to the foraminifer zonation of Matsunaga. Unfortunately, extensive barren intervals and sporadic occurrences of planktonic foraminifers prevented zonation of Quaternary and Pliocene intervals, although some interesting conclusions about paleoenvironment were possible and are listed below. A sequence of Neogene (sensu lato) paleoenvironmental events were identified: (1) deepening of the Yamato basins to middle bathyal depths by the early to middle Miocene, an event contemporaneous with the age of some deep basins known from uplifted sections adjacent to the Japan Basin; (2) cooling of the Japan Sea in the early middle Miocene; (3) oxygenation of deep waters in the late Miocene; (4) further cooling of surficial water masses between the Olduvai Subchron and the Brunhes/Matuyama Boundary; and (5) extermination of lower middle bathyal faunas and replacement by upper middle bathyal faunas near the base of the Quaternary.