969 resultados para Bellingshausen Sea, slope on TMF
Resumo:
Understanding the distribution and foraging ecology of major consumers within pelagic systems, specifically in relation to physical parameters, can be important for the management of bentho-pelagic systems undergoing rapid change associated with global climate change and other anthropogenic disturbances such as fishing (i.e., the Antarctic Peninsula and Scotia Sea). We tracked 11 adult male southern elephant seals (Mirounga leonina), during their five-month post-moult foraging migrations from King George Island (Isla 25 de Mayo), northern Antarctic Peninsula, using tags capable of recording and transmitting behavioural data and in situ temperature and salinity data. Seals foraged mostly within the Weddell-Scotia Confluence, while a few foraged along the western Antarctic Peninsula shelf of the Bellingshausen Sea. Mixed model outputs suggest that the at-sea behaviour of seals was associated with a number of environmental parameters, especially seafloor depth, sea-ice concentrations and the temperature structure of the water column. Seals increased dive bottom times and travelled at slower speeds in shallower areas and areas with increased sea-ice concentrations. Changes in dive depth and durations, as well as relative amount of time spent during the bottom phases of dives, were observed in relation to differences in overall temperature gradient, likely as a response to vertical changes in prey distribution associated with temperature stratification in the water column. Our results illustrate the likely complex influences of bathymetry, hydrography and sea ice on the behaviour of male southern elephant seals in a changing environment and highlight the need for region-specific approaches to studying environmental influences on behaviour.
Resumo:
The dataset is based on a long-term study (38 years) at the Galata transect and covers the spring-summer periods from 1967 till 2005. The whole dataset is composed of 360 data of total zooplankton biomass and abundance . Samples were collected in discrete layers 0-10m, 10-20m, 10-25m, 25-50m, 50-70m, 50-100m, 100-150. Mesozooplankton abundance: the collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Fishery Resource by Prof. Asen Konsulov and Institute of Oceanology by Prof. Asen Konsulov, Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Fishery Resource by prof. Asen Konsulov and Institute of Oceanology by Prof. Asen Konsulov, Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
Volcanogenic rocks from the Sea of Okhotsk are divided into seven age complexes: Late Jurassic, Early Cretaceous, Late Cretaceous, Eocene, Late Oligocene, Late Miocene, and Pliocene-Pleistocene. All these complexes are united into two groups - Late Mesozoic and Cenozoic. Each group reflects a certain stage of development of the Sea of Okhotsk region. Late Mesozoic volcanites build the geological basement of the Sea of Okhotsk, and their petrochemical features are similar to those of the volcanic rocks from the Okhotsk-Chukotka Volcanogen. Pliocene-Pleistocene volcanites reflect stages of tectono-magmatic activity; the latter destroyed the continental margin and produced riftogenic troughs. Geochemical features of volcanites from the Sea of Okhotsk indicate influence of the sialic crust on magma formation and testify formation of the Okhotsk Sea Basin on the destructive margin of the Asian continent.
Resumo:
Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.
Resumo:
Håkon Mosby Mud Volcano (HMMV, SW Barents Sea slope, 1280 m) is one of the numerous cold methane-venting seeps existing along the continental margins. Analyses of video-guided core samples revealed extreme differences in the diversity and density of the metazoan meiobenthic communities associated with the different sub-habitats (centre, microbial mats, Pogonophora field, outer rim) of this mud volcano. Diversity was lowest in the sulphidic, microbial mat sediments that supported the highest standing stock, with unusually high densities (11000 ind./10 cm**2) of 1 nematode species related to Geomonhystera disjuncta. Stable carbon isotope analyses revealed that this nematode species was thriving on chemosynthetically derived food sources in these sediments. Ovoviviparous reproduction has been identified as an important adaptation of parents securing the survival and development of their brood in this toxic environment. The proliferation of this single species in exclusive association with free-living, sulphide-oxidising bacteria (Beggiatoa) indicates that its dominance is strongly related to trophic specialisation, evidently uncommon among the meiofauna. This chemoautotrophic association was replaced by copepods in the bare, sulphide-free sediments of the volcano's centre, dominated by aerobic methane oxidation as the chemosynthetic process. Copepods and nauplii reached maximum densities and dominance in the volcano's centre (500 ind./10 cm**2). Their strongly depleted carbon isotope signatures indicated a trophic link with methane-derived carbon. This proliferation of only selected meiobenthic species supported by chemosynthetically derived carbon suggests that, in addition to the sediment geochemistry, the associated reduced meiobenthic diversity may equally be related to the trophic resource specificity in HMMV sub-habitats.
Resumo:
Water exchange between the Black Sea and the Mediterranean Sea has been a major focus of the paleohydrography of the eastern Mediterranean. Glacial melt water released from the Black Sea is a potential factor in the formation of sapropel S1, an organic-rich sediment layer that accumulated during the Early Holocene. A high-resolution study done on sediments from the Marmara Sea, the gateway between the Mediterranean and the Black Sea, sheds light on the Holocene exchange processes. Past sea surface temperature and sea surface salinity (SSS) were derived from stable oxygen isotope ratios (delta18O) of foraminiferal calcite and alkenone unsaturation ratios (Uk'37). Heavy delta18O values and high SSS in the Marmara Sea suggest absence of low salinity water from the Black Sea during S1. The comparison with data from the Levantine Basin and southern Aegean Sea outlines gradients of freshening in the eastern Mediterranean Sea, whereby the major sources of freshwater were closer to the Levantine Basin. It is thus concluded that the Black Sea was not a major freshwater source contributing to formation of S1. Given the absence of a low salinity layer, the deposition of organic-rich sediments corresponding to S1 in the Marmara Sea is likely the result of the global transgression and the concomitant re-organization of biogeochemical cycles, leading to enhanced productivity as shown by Globigerina bulloides.
Resumo:
The lipid composition of particulate matter in oceanic environments can provide informations on the nature and origin of the organic matter as well as on their transformation processes. Molecular characteristics for lipids in the Arctic environment have been used as indicators of the sources and transformation of organic particulate matter (Smith et al., 1997; Fahl and Stein, 1997, 1999). However, the features of the lipid composition of particulate matter in the Arctic with its high seasonality of ice Cover and primary productivity has been studied insufficiently. Lipids are one of the most important compounds of organic matter. On the one hand, the composition of lipids is a result of the variability of biological sources (phyto- and zooplankton, higher plants, bacteria etc.). On the other hand, the lipid composition of particulate matter is undergone significant alteration during vertical transport. The organic matter balance in the Arctic marginal seas, such as the Kara and Laptev seas, is characterized by the significant supply of dissolved and particulate material by the major Eurasian rivers - Ob, Yenisei and Lena (Cauwet and Sidorov, 1996; Gordeev et al., 1996, Martin et al., 1993). In relation to the world's ocean the primary productivity values are lower in the Arctic seas due to the ice-cover. However local increased values of primary productivity can be connected with the melting processes inducing increased phytoplankton growth near ice-edge (Nelson et al., 1989; Fahl and Stein, 1997) and enhanced river supply of nutrients, These features can influence the proportion of allochtonous and autochtonous components of the organic matter in the Arctic marginal seas (Fahl and Stein, 1997; Stein and Fahl, 1999). Furthermore, increased lipid contents in aquatic environments were found near density discontinuities (Parish et al., 1988). Although being less informative than lipid studies on the molecular level the character of lipid composition analysis on the group could also be used for studying of particulate organic matter and its transformation in sedimentation processes in the Arctic. In this paper the investigation of the characteristics of lipid composition performed by Alexandrova and Shevchenko (1997) in Arctic seas was continued.
Resumo:
The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected materia was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).