940 resultados para Behavior - Callithrix jacchus
Resumo:
Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.
Resumo:
Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.
Analysis of strain-rate dependent mechanical behavior of single chondrocyte : a finite element study
Resumo:
Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.
Resumo:
Recent studies suggest a high volume of sedentary behavior may be a risk factor for adverse health outcomes.1 However, few data exist on how this behavior is patterned (eg, does most sedentary behavior occur in a few long bouts or in many short bouts?) and whether sedentary patterns are relevant for health. We examined details of sedentary behavior among older women. Because physical activity is influenced by age, body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), and smoking status, we further examined sedentary behavior in relation to these characteristics.
Resumo:
Background Women with children are less likely to engage in adequate physical activity (PA) than women without children. This study aimed to evaluate the efficacy of two strategies for promoting increased PA among mothers of preschool-aged children, and to explore the mediators of any resulting change in PA behavior. Design Controlled intervention trial incorporating repeated data collection from 554 women, randomized to one of three experimental conditions. Intervention Group 1 served as a control, while women in Groups 2 and 3 were given print information about overcoming PA barriers. Women in Group 3 were also invited to discuss the development of local strategies for the promotion of PA among mothers of young children. The primary strategies included increasing partner support, social advocacy, and capacity building, and were implemented through collaboration among participants, researchers, and community organizations. Main Outcome Measures Adequate physical activity (PA), self-efficacy (SE) and partner support (PS). Results: Following the intervention, women in Group 3 were significantly more likely to meet guidelines for PA than controls (odds ratio [OR]=1.71, confidence interval [CI]=1.05–2.77)] after controlling for age and PA at baseline. After controlling for baseline PA, residualized change in SE (OR=1.86, CI=1.17–2.94) and PS (OR=2.29, CI=1.46–3.58) significantly predicted meeting guidelines. After controlling for residual change in PS and SE, the significant intervention effect was attenuated (Group 3 OR=1.40, CI=0.76–2.36), indicating that partner support and self-efficacy may be mediators of physical activity behavior change. Conclusions The findings indicate that community participation approaches that facilitate increased self-efficacy and partner support can be effective in increasing PA among mothers of young children.
Resumo:
Objective To evaluate a conceptual model linking parent physical activity (PA) orientations, parental support for PA, and PA behavior in preschool children. Methods Participants were 156 parent-child dyads from 13 child care centers in Queensland, Australia. Parents completed a questionnaire measuring parental PA, parental enjoyment of PA, perceived importance of PA, parental support for PA, parents' perceptions of competence, and child PA at home. MVPA while attending child care was measured via accelerometry. Data were collected between May and August of 2003. The relationships between the study variables and child PA were tested using observed variable path analysis. Results Parental PA and parents' perceptions of competence were positively associated with parental support for PA (β= 0.23 and 0.18, respectively, p<0.05). Parental support, in turn, was positively associated with child PA at home (β= 0.16, p<0.05), but not at child care (β= 0.01, p= 0.94). Parents' perceptions of competence was positively associated with both home-based and child care PA (β= 0.20 and 0.28, respectively, p<0.05). Conclusions Family-based interventions targeting preschoolers should include strategies to increase parental support for PA. Parents who perceive their child to have low physical competence should be encouraged to provide adequate support for PA. © 2009 Elsevier Inc.
Resumo:
Many countries conduct regular national time use surveys, some of which date back as far as the 1960s. Time use surveys potentially provide more detailed and accurate national estimates of the prevalence of sedentary and physical activity behavior than more traditional self-report surveillance systems. In this study, the authors determined the reliability and validity of time use surveys for assessing sedentary and physical activity behavior. In 2006 and 2007, participants (n = 134) were recruited from work sites in the Australian state of New South Wales. Participants completed a 2-day time use diary twice, 7 days apart, and wore an accelerometer. The 2 diaries were compared for test-retest reliability, and comparison with the accelerometer determined concurrent validity. Participants with similar activity patterns during the 2 diary periods showed reliability intraclass correlations of 0.74 and 0.73 for nonoccupational sedentary behavior and moderate/vigorous physical activity, respectively. Comparison of the diary with the accelerometer showed Spearman correlations of 0.57-0.59 and 0.45-0.69 for nonoccupational sedentary behavior and moderate/vigorous physical activity, respectively. Time use surveys appear to be more valid for population surveillance of nonoccupational sedentary behavior and health-enhancing physical activity than more traditional surveillance systems. National time use surveys could be used to retrospectively study nonoccupational sedentary and physical activity behavior over the past 5 decades.
Resumo:
The purpose of this study was to identify correlates of physical activity behavior in a sample of rural, predominantly African American youth. Three hundred sixty-one fifth-grade students from two rural counties in South Carolina (69% African American, median age = II years) completed a questionnaire designed to measure beliefs and social influences regarding physical activity, physical activity self-efficacy, perceived physical activity habits of family members and friends, and access to exercise and fitness equipment at home. After school physical activity and television watching were assessed using the Previous Day Physical Activity Recall (PDPAR). Students were classified as physically active according to a moderate physical activity standard: two or more 30-min blocks at an intensity of 3 METs (metabolic equivalents) or greater, and a vigorous physical activity standard: one or more 30-min blocks at an intensity of 6 METs or greater According to the moderate physical activity standard, 34.9% of students were classified as low-active. Multivariate analysis revealed age, gender television watching, and exercise equipment at home to be significant correlates of low activity status. According to the vigorous physical activity standard, 32.1 % of the students were classified as low-active. Multivariate analysis revealed age, gender television watching, and self-efficacy with respect to seeking support for physical activity to be significant correlates of low activity status. In summary, gender and the amount of television watching were found to be the most important correlates of physical activity in rural, predominantly African American youth.
Resumo:
Obesity rates are increasing in children of all ages, and reduced physical activity (PA) is a likely contributor to this trend. Little is known about the physical activity behavior of preschool-age children, or about the influence of preschool attendance on physical activity. Purpose The purpose of this study was to quantify the physical activity levels of children attending a center-based half-day preschool program. Methods Forty-two 3-to-5-year old children (Mean age = 4.0 ± 0.7, 54.8% Male, Mean BMI = 16.5 ± 5.5, Mean BMI %tile = 52.1 ± 33.5) from four class groups (two morning and two afternoon), wore an Actigraph 7164 accelerometer for the entire halfday program (including classroom learning experiences, snack and recess time) 2 times per week, for 10 weeks (20 activity monitoring records in total). Activity counts for each 5-sec interval were uploaded to a customized data reduction program to determine total counts, minutes of moderate PA (MPA) (3–5.9 METs), and minutes of vigorous PA (VPA) (> = 6 METs) per session. Counts were categorized as either MPA or VPA using the cutpoints developed by Sirard and colleagues (2001). Results Across the four 2.5 hour programs, the average MPA, VPA and total counts (× 103) were 12.4 ± 3.1 minutes, 18.3 ± 4.6 minutes, and 171.1 ± 29.7 counts, respectively. Thus, on average, children accumulated just over 12 minutes of moderateto-vigorous PA per hour of program attendance. The PA variables did not differ significantly by gender, weight status, or time of day. There were, however, significant age differences, with 3-year-olds exhibiting significantly less PA than their 4- and 5-year-old counterparts. Conclusions These results suggest that young children are relatively lowactive while attending preschool. Accordingly, interventions to increase movement opportunities during the preschool day are warranted.
Resumo:
Advanced grid stiffened composite cylindrical shell is widely adopted in advanced structures due to its exceptional mechanical properties. Buckling is a main failure mode of advanced grid stiffened structures in engineering, which calls for increasing attention. In this paper, the buckling response of advanced grid stiffened structure is investigated by three different means including equivalent stiffness model, finite element model and a hybrid model (H-model) that combines equivalent stiffness model with finite element model. Buckling experiment is carried out on an advanced grid stiffened structure to validate the efficiency of different modeling methods. Based on the comparison, the characteristics of different methods are independently evaluated. It is arguable that, by considering the defects of material, finite element model is a suitable numerical tool for the buckling analysis of advanced grid stiffened structures.
Resumo:
Despite considerable state investment and initiatives, binge drinking is still a major behavioral problem for policy makers and communities in many parts of the world. Furthermore, the practice of bingeing on alcohol seems to be spreading to young people in countries traditionally considered to have moderate drinking behaviors. Using a sociocultural lens and a framework of sociocultural themes from previous literature to develop propositions from their empirical study, the authors examine binge-drinking attitudes and behaviors among young people from high and moderate binge-drinking countries. The authors then make proposals regarding how policy makers can use social marketing more effectively to contribute to behavior change. Qualitative interviews were conducted with 91 respondents from 22 countries who were studying in two high binge-drinking countries at the time. The results show support for three contrasting sociocultural propositions that identify influences on binge drinking across these countries.
Resumo:
The Ar/O2plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4′, 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O2plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.
Resumo:
The response of complex ionized gas systems to the presence of nonuniform distribution of charged grains is investigated using a kinetic model. Contrary to an existing view that the electron temperature inevitably increases in the grain-occupied region because of enhanced ionization to compensate for the electrons lost to the grains, it is shown that this happens only when the ionizing electric field increases in the electron depleted region. The results for two typical plasma systems suggest that when the ionizing electric field depends on the spatially averaged electron density, the electron temperature in the grain containing region can actually decrease.
Resumo:
The aim of this paper is to determine the strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes, in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of these single cells at four different strain-rates. These results were then employed in inverse finite element analysis (FEA) using Modified Standard neo-Hookean Solid (MSnHS) idealization of these cells to determine their mechanical properties. In addition, a FEA model with a newly developed spring element was employed to accurately simulate AFM evaluation in this study. We report that both cytoskeleton (CSK) and intracellular fluid govern the strain-rate-dependent mechanical property of living cells whereas intracellular fluid plays a predominant role on fixed cells’ behavior. In addition, through the comparisons, it can be concluded that osteocytes are stiffer than chondrocytes at all strain-rates tested indicating that the cells could be the biomarker of their tissue origin. Finally, we report that MSnHS is able to capture the strain-rate-dependent mechanical behavior of osteocyte and chondrocyte for both living and fixed cells. Therefore, we concluded that the MSnHS is a good model for exploration of mechanical deformation responses of single osteocytes and chondrocytes. This study could open a new avenue for analysis of mechanical behavior of osteocytes and chondrocytes as well as other similar types of cells.
Resumo:
In the Australian sugar industry, sugar cane is smashed into a straw like material by hammers before being squeezed between large rollers to extract the sugar juice. The straw like material is initially called prepared cane and then bagasse as it passes through successive roller milling units. The sugar cane materials are highly compressible, have high moisture content, are fibrous, and they resemble some peat soils in both appearance and mechanical behaviour. A promising avenue to improve the performance of milling units for increased throughput and juice extraction, and to reduce costs is by modelling of the crushing process. To achieve this, it is believed necessary that milling models should be able to reproduce measured bagasse behaviour. This investigation sought to measure the mechanical (compression, shear, and volume) behaviour of prepared cane and bagasse, to identify limitations in currently used material models, and to progress towards a material model that can predict bagasse behaviour adequately. Tests were carried out using a modified direct shear test equipment and procedure at most of the large range of pressures occurring in the crushing process. The investigation included an assessment of the performance of the direct shear test for measuring bagasse behaviour. The assessment was carried out using finite element modelling. It was shown that prepared cane and bagasse exhibited critical state behavior similar to that of soils and the magnitudes of material parameters were determined. The measurements were used to identify desirable features for a bagasse material model. It was shown that currently used material models had major limitations for reproducing bagasse behaviour. A model from the soil mechanics literature was modified and shown to achieve improved reproduction while using magnitudes of material parameters that better reflected the measured values. Finally, a typical three roller mill pressure feeder configuration was modelled. The predictions and limitations were assessed by comparison to measured data from a sugar factory.