970 resultados para Bean - Plant residues in soil - Productivity
Resumo:
In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.
Resumo:
One of the expected benefits of no-tillage systems is a higher rate of soil C sequestration. However, higher C retention in soil is not always apparent when no-tillage is applied, due e.g., to substantial differences in soil type and initial C content. The main purpose of this study was to evaluate the potential of no-tillage management to increase the stock of total organic C in soils of the Pampas region in Argentina. Forty crop fields under no-tillage and conventional tillage systems and seven undisturbed soils were sampled. Total organic C, total N, their fractions and stratification ratios and the C storage capacity of the soils under different managements were assessed in samples to a depth of 30 cm, in three layers (0-5, 5-15 and 15-30 cm). The differences between the C pools of the undisturbed and cultivated soils were significant (p < 0.05) and most pronounced in the top (0-5 cm) soil layer, with more active C near the soil surface (undisturbed > no-tillage > conventional tillage). Based on the stratification ratio of the labile C pool (0-5/5-15 cm), the untilled were separated from conventionally tilled areas. Much of the variation in potentially mineralizable C was explained by this active C fraction (R² = 0.61) and by total organic C (R² = 0.67). No-till soils did not accumulate more organic C than conventionally tilled soils in the 0-30 cm layer, but there was substantial stratification of total and active C pools at no till sites. If the C stratification ratio is really an indicator of soil quality, then the C storage potential of no-tillage would be greater than in conventional tillage, at least in the surface layers. Particulate organic C and potentially mineralizable C may be useful to evaluate variations in topsoil organic matter.
Resumo:
The cultivation of crops with different capacity of P uptake and use under long-term soil tillage systems can affect the distribution of P cycling and inorganic forms in the soil, as a result of higher or lower use efficiency of P applied in fertilizers. The purpose of this study was to evaluate the effect of long-term cultivation of different winter species under tillage systems on the distribution of inorganic P forms in the soil. In 1986, the experiment was initiated with six winter crops (blue lupin, hairy vetch, oat, oilseed radish, wheat and fallow) on a Rhodic Hapludox in southwestern Paraná, under no-tillage (NT) and conventional tillage (CT). The application of phosphate fertilizer in NT rows increased inorganic P in the labile and moderately labile forms, and soil disturbance in CT redistributed the applied P in the deeper layers, increasing the moderately labile P concentration in the subsurface layers. Black oat and blue lupin were the most efficient P-recyclers and under NT, they increased the labile P content in the soil surface layers.
Resumo:
The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O), supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste). The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol), which was incubated for 100 days, at 70 % (w/w) moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB) were the silicate rocks that most influenced soil pH, while the mining byproduct (MB) led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.
Resumo:
Successive applications of liquid swine waste to the soil can increase the contents of total organic carbon and nutrients and change acidity-related soil chemical properties. However, little information is available on the effects of swine waste application in solid form, as of swine deep-litter. The objective of this study was to evaluate alterations of organic carbon and acidity-related properties of a soil after eight years of pig slurry and deep-litter application. In the eighth year of a field experiment established in Braço do Norte, Santa Catarina (SC) on a sandy Typic Hapludalf samples were taken (layers 0-2.5; 2.5-5; 5-10; 10-15; 15-20 and 20-30 cm) from unfertilized plots and plots with pig slurry or deep-litter applications, providing the simple or double rate of N requirement of Zea mays and Avena strigosa in rotation. Soil total organic carbon, water pH, exchangeable Al, Ca and Mg, and cation exchange capacity (CECeffective and CECpH7.0), H+Al, base saturation, and aluminum saturation were measured. The application of pig slurry and deep-litter for eight years increased total organic carbon and CEC in all soil layers. The pig slurry and deep-litter applications reduced active acidity and aluminum saturation and increased base saturation down to a depth of 30 cm. Eight years of pig slurry application did not affect soil acidity.
Resumo:
Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S) with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS) in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-)), which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2-) concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms) was carried out by isotope ratio mass spectrometry (IRMS). In this work, the labeled material (K2(34)SO4) was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.
Resumo:
Successive applications of pig slurry to soils under no-tillage can increase the nutrient levels in the uppermost soil layers and part of the nutrients may be transferred to deeper layers. The objective was to evaluate the distribution of nutrients in the profile of a soil after 19 pig slurry applications under no-tillage for 93 months. The experiment was conducted from May 2000 to January 2008 in an experimental area of the Federal University of Santa Maria, southern Brazil, on a Typic Hapludalf. The treatments consisted of pig slurry applications (0, 20, 40 and 80 m³ ha-1) and at the end of the experiment, soil samples were collected (layers 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-18, 18-20, 20-25, 25-30, 30-35, 35-40, 40-50 and 50-60 cm). The levels of mineral N, available P and K and total N, P and K were evaluated. The 19 pig slurry applications in 93 months promoted migration of total N and P down to 30 cm and available P and K to the deepest layer analyzed. At the end of the experiment, no increase was observed in mineral N content in the deeper layers, but increased levels of available P and K, showing a transfer of N, P and K to layers below the sampled. This evidences undesirable environmental and economic consequences of the use of pig slurry and reinforces the need for a more rational use, i.e., applications of lower manure doses, combined with mineral fertilizers.
Resumo:
In unfertilized, highly weathered tropical soils, phosphorus (P) availability to plants is dependent on the mineralization of organic P (Po) compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and < 0.25 mm under leguminous forest tree species, pasture and "capoeira" (secondary forest) in the 0-10 cm layer of a Red-Yellow Latosol after 90 d of incubation. The type of vegetation cover, soil incubation time and soil size fractions had a significant effect on total P and labile P (Pi and Po) fraction contents. The total average Po content decreased in soil macroaggregates by 25 and 15 % in the > 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of < 0.25 mm. Labile Po was significantly reduced by incubation in the > 2.0 (-50 %) and < 0.25 mm (-76 %) fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po) in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.
Resumo:
The variety of soils in the State of Acre is wide and their chemical profiles are still not fully understood. The nature of the material of origin of these soils is indicated by the high aluminium (Al) content, commonly associated with high calcium (Ca) and magnesium (Mg) contents. The study objective was to use different methods to quantify Al in soils from toposequences formed from material of a sedimentary nature originating from the Solimões Formation, in Acre, Brazil. Trenches were opened at three distinct points in the landscape: shoulder, backslope and footslope positions. Soil samples were collected for physical, chemical, mineralogical analyses. The Al content was quantified using different methods. High Al contents were found in most of these horizons, associated with high Ca and Mg levels, representing the predominant cations in the sum of exchangeable bases. The mineralogy indicates that the soils are still in a low weathering phase, with the presence of significant quantities of 2:1 minerals. Similar Al contents were determined by the methods of NaOH titration, xylenol orange spectrometry and inductively coupled plasma optical emission spectrometry. However, no consistent data were obtained by the pyrocatechol violet method. Extraction with KCl overestimated the exchangeable Al content due to its ability to extract the non-exchangeable Al present in the smectite interlayers. It was observed that high Al contents are related to the instability of the hydroxyl-Al smectite interlayers.
Resumo:
Inorganic phosphorus (Pi) usually controls the P availability in tropical soils, but the contribution of organic P (Po) should not be neglected, mainly in systems with low P input or management systems that promote organic matter accumulation. The aims of this study were to evaluate the changes in the Po fractions over time in soil fertilized and not fertilized with cattle manure and to correlate Po forms with available P extracted by anion exchange resin. The experiment was carried out under field conditions, in a sandy-clay loam Haplustox. The experimental design was a 2 × 9 randomized complete block factorial design, in which the first factor was manure application (20 t ha-1) or absence, and the second the soil sampling times (3, 7, 14, 21, 28, 49, 70, 91, and 112 days) after manure incorporation. Labile, moderately labile and non-labile Po fractions were determined in the soil material of each sampling. Manure fertilization increased the Po levels in the moderately labile and non-labile fractions and the total organic P, but did not affect the Po fraction proportions in relation to total organic P. On average, 5.1 % of total Po was in the labile, 44.4 % in the moderately labile and 50.5 % in the non-labile fractions. Available P (resin P) was more affected by the manure soluble Pi rather than by the labile Po forms. The labile and non-labile Po fractions varied randomly with no defined trend in relation to the samplings; for this reason, the data did not fit any mathematical model.
Resumo:
Among the greenhouse gases, nitrous oxide (N2O) is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2) and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N) and rice straw levels (0, 5 and 10 Mg ha-1), i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF), significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.
Resumo:
Preharvest burning is widely used in Brazil for sugarcane cropping. However, due to environmental restrictions, harvest without burning is becoming the predominant option. Consequently, changes in the microbial community are expected from crop residue accumulation on the soil surface, as well as alterations in soil metabolic diversity as of the first harvest. Because biological properties respond quickly and can be used to monitor environmental changes, we evaluated soil metabolic diversity and bacterial community structure after the first harvest under sugarcane management without burning compared to management with preharvest burning. Soil samples were collected under three sugarcane varieties (SP813250, SP801842 and RB72454) and two harvest management systems (without and with preharvest burning). Microbial biomass C (MBC), carbon (C) substrate utilization profiles, bacterial community structure (based on profiles of 16S rRNA gene amplicons), and soil chemical properties were determined. MBC was not different among the treatments. C-substrate utilization and metabolic diversity were lower in soil without burning, except for the evenness index of C-substrate utilization. Soil samples under the variety SP801842 showed the greatest changes in substrate utilization and metabolic diversity, but showed no differences in bacterial community structure, regardless of the harvest management system. In conclusion, combined analysis of soil chemical and microbiological data can detect early changes in microbial metabolic capacity and diversity, with lower values in management without burning. However, after the first harvest, there were no changes in the soil bacterial community structure detected by PCR-DGGE under the sugarcane variety SP801842. Therefore, the metabolic profile is a more sensitive indicator of early changes in the soil microbial community caused by the harvest management system.
Resumo:
ABSTRACT The combined incorporation of sewage sludge (SS) and oat straw (OS) to the soil can increase straw carbon mineralization and microbial nitrogen immobilization. This hypothesis was tested in two laboratory experiments, in which SS was incorporated in the soil with and without OS. One treatment in which only straw was incorporated and a control with only soil were also evaluated. The release of CO2 and mineral N in the soil after organic material incorporation was evaluated for 110 days. The cumulative C mineralization reached 30.1 % for SS and 54.7 % for OS. When these organic materials were incorporated together in the soil, straw C mineralization was not altered. About 60 % of organic N in the SS was mineralized after 110 days. This N mineralization index was twice as high as that defined by Resolution 375/2006 of the National Environmental Council. The combined incorporation of SS and OS in the soil caused an immobilization of microbial N of 5.9 kg Mg-1 of OS (mean 3.5 kg Mg-1). The results of this study indicated that SS did not increase straw C mineralization, but the SS rate should be adjusted to compensate for the microbial N immobilization caused by straw.