1000 resultados para Be
Resumo:
- Objectives To explore if active learning principles be applied to nursing bioscience assessments and will this influence student perception of confidence in applying theory to practice? - Design and Data Sources A review of the literature utilising searches of various databases including CINAHL, PUBMED, Google Scholar and Mosby's Journal Index. - Methods The literature search identified research from twenty-six original articles, two electronic books, one published book and one conference proceedings paper. - Results Bioscience has been identified as an area that nurses struggle to learn in tertiary institutions and then apply to clinical practice. A number of problems have been identified and explored that may contribute to this poor understanding and retention. University academics need to be knowledgeable of innovative teaching and assessing modalities that focus on enhancing student learning and address the integration issues associated with the theory practice gap. Increased bioscience education is associated with improved patient outcomes therefore by addressing this “bioscience problem” and improving the integration of bioscience in clinical practice there will subsequently be an improvement in health care outcomes. - Conclusion From the literature several themes were identified. First there are many problems with teaching nursing students bioscience education. These include class sizes, motivation, concentration, delivery mode, lecturer perspectives, student's previous knowledge, anxiety, and a lack of confidence. Among these influences the type of assessment employed by the educator has not been explored or identified as a contributor to student learning specifically in nursing bioscience instruction. Second that educating could be achieved more effectively if active learning principles were applied and the needs and expectations of the student were met. Lastly, assessment influences student retention and the student experience and as such assessment should be congruent with the subject content, align with the learning objectives and be used as a stimulus tool for learning.
Resumo:
Evaluation of protein and metabolite expression patterns in blood using mass spectrometry and high-throughput antibody-based screening platforms has potential for the discovery of new biomarkers for managing breast cancer patient treatment. Previously identified blood-based breast cancer biomarkers, including cancer antigen 15.3 (CA15-3) are useful in combination with imaging (computed tomography scans, magnetic resonance imaging, X-rays) and physical examination for monitoring tumour burden in advanced breast cancer patients. However, these biomarkers suffer from insufficient levels of accuracy and with new therapies available for the treatment of breast cancer, there is an urgent need for reliable, non-invasive biomarkers that measure tumour burden with high sensitivity and specificity so as to provide early warning of the need to switch to an alternative treatment. The aim of this study was to identify a biomarker signature of tumour burden using cancer and non-cancer (healthy controls/non-malignant breast disease) patient samples. Results demonstrate that combinations of three candidate biomarkers from Glutamate, 12-Hydroxyeicosatetraenoic acid, Beta-hydroxybutyrate, Factor V and Matrix metalloproteinase-1 with CA15-3, an established biomarker for breast cancer, were found to mirror tumour burden, with AUC values ranging from 0.71 to 0.98 when comparing non-malignant breast disease to the different stages of breast cancer. Further validation of these biomarker panels could potentially facilitate the management of breast cancer patients, especially to assess changes in tumour burden in combination with imaging and physical examination.
Resumo:
The Australian government has recently pledged a reduction in GHGs emissions of 26–28% below the 2005 level by 2030. How big is the challenge for the country to achieve this target in terms of its present emissions profile, recent historical trends, and the contributions to those trends from key proximate factors contributing to emissions? In this paper, we attempt a quantitative judgement of the challenge by using decomposition analysis. Based on the analysis it appears the announced target will be quite challenging to achieve if the average annual mitigating effects from economic restructuring, energy efficiency improvements and movement towards less emissions-intensive energy sources in evidence over 2002–2013 continued through to 2030; however, if the contribution from these mitigating sources in evidence over 2006–2013 can be sustained, achievement of the target will be much less challenging. The challenge for government then will be to provide a policy framework to ensure the more pronounced beneficial impacts of the mitigating factors evidenced during 2006–2013 can be maintained over the years to 2030.
Resumo:
The shooting of a social worker by a client on the Gold Coast in 1991 graphically illustrated the issue of physical assaults and violence by service users against social workers. In this article we look at the incidence of physical assault, threats of violence, abuse of agency property and verbal abuse to social and other welfare workers by clients, using data from a survey in Melbourne. We then look at probable causes of menacing behaviour, such as issues involved in work with involuntary clients' and we discuss options for preventing and coping with violence and abuse in the welfare work place.
Resumo:
The main method of modifying properties of semiconductors is to introduce small amount of impurities inside the material. This is used to control magnetic and optical properties of materials and to realize p- and n-type semiconductors out of intrinsic material in order to manufacture fundamental components such as diodes. As diffusion can be described as random mixing of material due to thermal movement of atoms, it is essential to know the diffusion behavior of the impurities in order to manufacture working components. In modified radiotracer technique diffusion is studied using radioactive isotopes of elements as tracers. The technique is called modified as atoms are deployed inside the material by ion beam implantation. With ion implantation, a distinct distribution of impurities can be deployed inside the sample surface with good con- trol over the amount of implanted atoms. As electromagnetic radiation and other nuclear decay products emitted by radioactive materials can be easily detected, only very low amount of impurities can be used. This makes it possible to study diffusion in pure materials without essentially modifying the initial properties by doping. In this thesis a modified radiotracer technique is used to study the diffusion of beryllium in GaN, ZnO, SiGe and glassy carbon. GaN, ZnO and SiGe are of great interest to the semiconductor industry and beryllium as a small and possibly rapid dopant hasn t been studied previously using the technique. Glassy carbon has been added to demonstrate the feasibility of the technique. In addition, the diffusion of magnetic impurities, Mn and Co, has been studied in GaAs and ZnO (respectively) with spintronic applications in mind.
Resumo:
Suitable pin-to-hole interference can significantly increase the fatigue life of a pin joint. In practical design, the initial stresses due to interference are high and they are proportional to the effective interference. In experimental studies on such joints, difficulties have been experienced in estimating the interference accurately from physical measurements of pin and hole diameters. A simple photoelastic method has been developed to determine the effective interference to a high degree of accuracy. This paper presents the method and reports illustrative data from a successful application thereof.
Resumo:
Biological motion has successfully been used for analysis of a person's mood and other psychological traits. Efforts are made to use human gait as a non-invasive mode of biometric. In this reported work, we try to study the effectiveness of biological gait motion of people as a cue to biometric based person recognition. The data is 3D in nature and, hence, has more information with itself than the cues obtained from video-based gait patterns. The high accuracies of person recognition using a simple linear model of data representation and simple neighborhood based classfiers, suggest that it is the nature of the data which is more important than the recognition scheme employed.