952 resultados para Bayesian Model Averaging
Resumo:
We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.
Resumo:
The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes.
Resumo:
We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
BACKGROUND: The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. RESULTS: Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. CONCLUSION: ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.
Resumo:
Aims: Plasma concentrations of imatinib differ largely between patients despite same dosage, owing to large inter-individual variability in pharmacokinetic (PK) parameters. As the drug concentration at the end of the dosage interval (Cmin) correlates with treatment response and tolerability, monitoring of Cmin is suggested for therapeutic drug monitoring (TDM) of imatinib. Due to logistic difficulties, random sampling during the dosage interval is however often performed in clinical practice, thus rendering the respective results not informative regarding Cmin values.Objectives: (I) To extrapolate randomly measured imatinib concentrations to more informative Cmin using classical Bayesian forecasting. (II) To extend the classical Bayesian method to account for correlation between PK parameters. (III) To evaluate the predictive performance of both methods.Methods: 31 paired blood samples (random and trough levels) were obtained from 19 cancer patients under imatinib. Two Bayesian maximum a posteriori (MAP) methods were implemented: (A) a classical method ignoring correlation between PK parameters, and (B) an extended one accounting for correlation. Both methods were applied to estimate individual PK parameters, conditional on random observations and covariate-adjusted priors from a population PK model. The PK parameter estimates were used to calculate trough levels. Relative prediction errors (PE) were analyzed to evaluate accuracy (one-sample t-test) and to compare precision between the methods (F-test to compare variances).Results: Both Bayesian MAP methods allowed non-biased predictions of individual Cmin compared to observations: (A) - 7% mean PE (CI95% - 18 to 4 %, p = 0.15) and (B) - 4% mean PE (CI95% - 18 to 10 %, p = 0.69). Relative standard deviations of actual observations from predictions were 22% (A) and 30% (B), i.e. comparable to the intraindividual variability reported. Precision was not improved by taking into account correlation between PK parameters (p = 0.22).Conclusion: Clinical interpretation of randomly measured imatinib concentrations can be assisted by Bayesian extrapolation to maximum likelihood Cmin. Classical Bayesian estimation can be applied for TDM without the need to include correlation between PK parameters. Both methods could be adapted in the future to evaluate other individual pharmacokinetic measures correlated to clinical outcomes, such as area under the curve(AUC).
Resumo:
Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site in Denmark during a forced infiltration experiment.
Resumo:
Standard practice of wave-height hazard analysis often pays little attention to the uncertainty of assessed return periods and occurrence probabilities. This fact favors the opinion that, when large events happen, the hazard assessment should change accordingly. However, uncertainty of the hazard estimates is normally able to hide the effect of those large events. This is illustrated using data from the Mediterranean coast of Spain, where the last years have been extremely disastrous. Thus, it is possible to compare the hazard assessment based on data previous to those years with the analysis including them. With our approach, no significant change is detected when the statistical uncertainty is taken into account. The hazard analysis is carried out with a standard model. Time-occurrence of events is assumed Poisson distributed. The wave-height of each event is modelled as a random variable which upper tail follows a Generalized Pareto Distribution (GPD). Moreover, wave-heights are assumed independent from event to event and also independent of their occurrence in time. A threshold for excesses is assessed empirically. The other three parameters (Poisson rate, shape and scale parameters of GPD) are jointly estimated using Bayes' theorem. Prior distribution accounts for physical features of ocean waves in the Mediterranean sea and experience with these phenomena. Posterior distribution of the parameters allows to obtain posterior distributions of other derived parameters like occurrence probabilities and return periods. Predictives are also available. Computations are carried out using the program BGPE v2.0
Resumo:
Forensic scientists face increasingly complex inference problems for evaluating likelihood ratios (LRs) for an appropriate pair of propositions. Up to now, scientists and statisticians have derived LR formulae using an algebraic approach. However, this approach reaches its limits when addressing cases with an increasing number of variables and dependence relationships between these variables. In this study, we suggest using a graphical approach, based on the construction of Bayesian networks (BNs). We first construct a BN that captures the problem, and then deduce the expression for calculating the LR from this model to compare it with existing LR formulae. We illustrate this idea by applying it to the evaluation of an activity level LR in the context of the two-trace transfer problem. Our approach allows us to relax assumptions made in previous LR developments, produce a new LR formula for the two-trace transfer problem and generalize this scenario to n traces.
Resumo:
The objective of this study was to estimate genetic parameters for survival and weight of Nile tilapia (Oreochromis niloticus), farmed in cages and ponds in Brazil, and to predict genetic gain under different scenarios. Survival was recorded as a binary response (dead or alive), during harvest time in the 2008 grow-out period. Genetic parameters were estimated using a Bayesian mixed linear-threshold animal model via Gibbs sampling. The breeding population consisted of 2,912 individual fish, which were analyzed together with the pedigree of 5,394 fish. The heritabilities estimates, with 95% posterior credible intervals, for tagging weight, harvest weight and survival were 0.17 (0.09-0.27), 0.21 (0.12-0.32) and 0.32 (0.22-0.44), respectively. Credible intervals show a 95% probability that the true genetic correlations were in a favourable direction. The selection for weight has a positive impact on survival. Estimated genetic gain was high when selecting for harvest weight (5.07%), and indirect gain for tagging weight (2.17%) and survival (2.03%) were also considerable.
Resumo:
Purpose : To assess time trends of testicular cancer (TC) mortality in Spain for period 1985-2019 for age groups 15-74 years old through a Bayesian age-period-cohort (APC) analysis. Methods: A Bayesian age-drift model has been fitted to describe trends. Projections for 2005-2019 have been calculated by means of an autoregressive APC model. Prior precision for these parameters has been selected through evaluation of an adaptive precision parameter and 95% credible intervals (95% CRI) have been obtained for each model parameter. Results: A decrease of -2.41% (95% CRI: -3.65%; -1.13%) per year has been found for TC mortality rates in age groups 15-74 during 1985-2004, whereas mortality showed a lower annual decrease when data was restricted to age groups 15-54 (-1.18%; 95% CRI: -2.60%; -0.31%). During 2005-2019 is expected a decrease of TC mortality of 2.30% per year for men younger than 35, whereas a leveling off for TC mortality rates is expected for men older than 35. Conclusions: A Bayesian approach should be recommended to describe and project time trends for those diseases with low number of cases. Through this model it has been assessed that management of TC and advances in therapy led to decreasing trend of TC mortality during the period 1985-2004, whereas a leveling off for these trends can be considered during 2005-2019 among men older than 35.
Resumo:
Purpose : To assess time trends of testicular cancer (TC) mortality in Spain for period 1985-2019 for age groups 15-74 years old through a Bayesian age-period-cohort (APC) analysis. Methods: A Bayesian age-drift model has been fitted to describe trends. Projections for 2005-2019 have been calculated by means of an autoregressive APC model. Prior precision for these parameters has been selected through evaluation of an adaptive precision parameter and 95% credible intervals (95% CRI) have been obtained for each model parameter. Results: A decrease of -2.41% (95% CRI: -3.65%; -1.13%) per year has been found for TC mortality rates in age groups 15-74 during 1985-2004, whereas mortality showed a lower annual decrease when data was restricted to age groups 15-54 (-1.18%; 95% CRI: -2.60%; -0.31%). During 2005-2019 is expected a decrease of TC mortality of 2.30% per year for men younger than 35, whereas a leveling off for TC mortality rates is expected for men older than 35. Conclusions: A Bayesian approach should be recommended to describe and project time trends for those diseases with low number of cases. Through this model it has been assessed that management of TC and advances in therapy led to decreasing trend of TC mortality during the period 1985-2004, whereas a leveling off for these trends can be considered during 2005-2019 among men older than 35.
Resumo:
Purpose : To assess time trends of testicular cancer (TC) mortality in Spain for period 1985-2019 for age groups 15-74 years old through a Bayesian age-period-cohort (APC) analysis. Methods: A Bayesian age-drift model has been fitted to describe trends. Projections for 2005-2019 have been calculated by means of an autoregressive APC model. Prior precision for these parameters has been selected through evaluation of an adaptive precision parameter and 95% credible intervals (95% CRI) have been obtained for each model parameter. Results: A decrease of -2.41% (95% CRI: -3.65%; -1.13%) per year has been found for TC mortality rates in age groups 15-74 during 1985-2004, whereas mortality showed a lower annual decrease when data was restricted to age groups 15-54 (-1.18%; 95% CRI: -2.60%; -0.31%). During 2005-2019 is expected a decrease of TC mortality of 2.30% per year for men younger than 35, whereas a leveling off for TC mortality rates is expected for men older than 35. Conclusions: A Bayesian approach should be recommended to describe and project time trends for those diseases with low number of cases. Through this model it has been assessed that management of TC and advances in therapy led to decreasing trend of TC mortality during the period 1985-2004, whereas a leveling off for these trends can be considered during 2005-2019 among men older than 35.
Resumo:
Purpose : To assess time trends of testicular cancer (TC) mortality in Spain for period 1985-2019 for age groups 15-74 years old through a Bayesian age-period-cohort (APC) analysis. Methods: A Bayesian age-drift model has been fitted to describe trends. Projections for 2005-2019 have been calculated by means of an autoregressive APC model. Prior precision for these parameters has been selected through evaluation of an adaptive precision parameter and 95% credible intervals (95% CRI) have been obtained for each model parameter. Results: A decrease of -2.41% (95% CRI: -3.65%; -1.13%) per year has been found for TC mortality rates in age groups 15-74 during 1985-2004, whereas mortality showed a lower annual decrease when data was restricted to age groups 15-54 (-1.18%; 95% CRI: -2.60%; -0.31%). During 2005-2019 is expected a decrease of TC mortality of 2.30% per year for men younger than 35, whereas a leveling off for TC mortality rates is expected for men older than 35. Conclusions: A Bayesian approach should be recommended to describe and project time trends for those diseases with low number of cases. Through this model it has been assessed that management of TC and advances in therapy led to decreasing trend of TC mortality during the period 1985-2004, whereas a leveling off for these trends can be considered during 2005-2019 among men older than 35.
Resumo:
We present the most comprehensive comparison to date of the predictive benefit of genetics in addition to currently used clinical variables, using genotype data for 33 single-nucleotide polymorphisms (SNPs) in 1,547 Caucasian men from the placebo arm of the REduction by DUtasteride of prostate Cancer Events (REDUCE®) trial. Moreover, we conducted a detailed comparison of three techniques for incorporating genetics into clinical risk prediction. The first method was a standard logistic regression model, which included separate terms for the clinical covariates and for each of the genetic markers. This approach ignores a substantial amount of external information concerning effect sizes for these Genome Wide Association Study (GWAS)-replicated SNPs. The second and third methods investigated two possible approaches to incorporating meta-analysed external SNP effect estimates - one via a weighted PCa 'risk' score based solely on the meta analysis estimates, and the other incorporating both the current and prior data via informative priors in a Bayesian logistic regression model. All methods demonstrated a slight improvement in predictive performance upon incorporation of genetics. The two methods that incorporated external information showed the greatest receiver-operating-characteristic AUCs increase from 0.61 to 0.64. The value of our methods comparison is likely to lie in observations of performance similarities, rather than difference, between three approaches of very different resource requirements. The two methods that included external information performed best, but only marginally despite substantial differences in complexity.