257 resultados para Ballistic helmets
Resumo:
Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.
Resumo:
In this paper we analyze the structure of Fe-Ga layers with a Ga content of ∼30 at.% deposited by the sputtering technique under two different regimes. We also studied the correlation between the structure and magnetic behavior of the samples. Keeping the Ar pressure fixed, we modified the flow regime from ballistic to diffusive by increasing the distance between the target and the substrate. X-ray diffraction measurements have shown a lower structural quality when growing in the diffusive flow. We investigated the impact of the growth regime by means of x-ray absorption fine structure (XAFS) measurements and obtained signs of its influence on the local atomic order. Full multiple scattering and finite difference calculations based on XAFS measurements point to a more relevant presence of a disordered A2 phase and of orthorhombic Ga clusters on the Fe-Ga alloy deposited under a diffusive regime; however, in the ballistic sample, a higher presence of D0_3/B2 phases is evidenced. Structural characteristics, from local to long range, seem to determine the magnetic behavior of the layers. Whereas a clear in-plane magnetic anisotropy is observed in the film deposited under ballistic flow, the diffusive sample is magnetically isotropic. Therefore, our experimental results provide evidence of a correlation between flow regime and structural properties and its impact on the magnetic behavior of a rather unexplored compositional region of Fe-Ga compounds.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results.
Resumo:
An up to 2-cm thick Chicxulub ejecta deposit marking the Cretaceous-Paleogene (K-Pg) boundary (the "K-T" boundary) was recovered in six holes drilled during ODP Leg 207 (Demerara Rise, tropical western Atlantic). Stunning features of this deposit are its uniformity over an area of 30 km2 and the total absence of bioturbation, allowing documentation of the original sedimentary sequence. High-resolution mineralogical, petrological, elemental, isotopic (Sr-Nd), and rock magnetic data reveal a distinct microstratigraphy and a range of ejecta components. The deposit is normally graded and composed predominantly of rounded, 0.1- to max. 1-mm sized spherules. Spherules are altered to dioctahedral aluminous smectite, though occasionally relict Si-Al-rich hydrated glass is also present, suggesting acidic precursor lithologies. Spherule textures vary from hollow to vesicle-rich to massive; some show in situ collapse, others include distinct Fe-Mg-Ca-Ti-rich melt globules and lath-shaped Al-rich quench crystals. Both altered glass spherules and the clay matrix (Site 1259B) display strongly negative epsilon-Nd (T=65Ma) values (-17) indicating uptake of Nd from contemporaneous ocean water during alteration. Finally, Fe-Mg-rich spherules, shocked quartz and feldspar grains, few lithic clasts, as well as abundant accretionary and porous carbonate clasts are concentrated in the uppermost 0.5-0.7 mm of the deposit. The carbonate clasts display in part very unusual textures, which are interpreted to be of shock-metamorphic origin. The preservation of delicate spherule textures, normal grading with lack of evidence for traction transport, and sub-millimeter scale compositional trends provide evidence for this spherule deposit representing a primary air-fall deposit not affected by significant reworking. The ODP Leg 207 spherule deposit is the first known dual-layer K-Pg boundary in marine settings; it incorporates compositional and stratigraphic aspects of both proximal and distal marine sites. Its stratigraphy strongly resembles the dual-layer K-Pg boundary deposits in the terrestrial Western Interior of North America (although there carbonate phases are not preserved). The occurrence of a dual ejecta layer in these quite different sedimentary environments - separated by several thousands of kilometers - provides additional evidence for an original sedimentary sequence. Therefore, the layered nature of the deposit may document compositional differences between ballistic Chicxulub ejecta forming the majority of the spherule deposit, and material falling out from the vapor (ejecta) plume, which is concentrated in the uppermost part.
Resumo:
Single-walled carbon nanotubes (SWNTs) have been studied as a prominent class of high performance electronic materials for next generation electronics. Their geometry dependent electronic structure, ballistic transport and low power dissipation due to quasi one dimensional transport, and their capability of carrying high current densities are some of the main reasons for the optimistic expectations on SWNTs. However, device applications of individual SWNTs have been hindered by uncontrolled variations in characteristics and lack of scalable methods to integrate SWNTs into electronic devices. One relatively new direction in SWNT electronics, which avoids these issues, is using arrays of SWNTs, where the ensemble average may provide uniformity from device to device, and this new breed of electronic material can be integrated into electronic devices in a scalable fashion. This dissertation describes (1) methods for characterization of SWNT arrays, (2) how the electrical transport in these two-dimensional arrays depend on length scales and spatial anisotropy, (3) the interaction of aligned SWNTs with the underlying substrate, and (4) methods for scalable integration of SWNT arrays into electronic devices. The electrical characterization of SWNT arrays have been realized by polymer electrolyte-gated SWNT thin film transistors (TFTs). Polymer electrolyte-gating addresses many technical difficulties inherent to electrical characterization by gating through oxide-dielectrics. Having shown polymer electrolyte-gating can be successfully applied on SWNT arrays, we have studied the length scaling dependence of electrical transport in SWNT arrays. Ultrathin films formed by sub-monolayer surface coverage of SWNT arrays are very interesting systems in terms of the physics of two-dimensional electronic transport. We have observed that they behave qualitatively different than the classical conducting films, which obey the Ohm’s law. The resistance of an ultrathin film of SWNT arrays is indeed non-linear with the length of the film, across which the transport occurs. More interestingly, a transition between conducting and insulating states is observed at a critical surface coverage, which is called percolation limit. The surface coverage of conducting SWNTs can be manipulated by turning on and off the semiconductors in the SWNT array, leading to the operation principle of SWNT TFTs. The percolation limit depends also on the length and the spatial orientation of SWNTs. We have also observed that the percolation limit increases abruptly for aligned arrays of SWNTs, which are grown on single crystal quartz substrates. In this dissertation, we also compare our experimental results with a two-dimensional stick network model, which gives a good qualitative picture of the electrical transport in SWNT arrays in terms of surface coverage, length scaling, and spatial orientation, and briefly discuss the validity of this model. However, the electronic properties of SWNT arrays are not only determined by geometrical arguments. The contact resistances at the nanotube-nanotube and nanotube-electrode (bulk metal) interfaces, and interactions with the local chemical groups and the underlying substrates are among other issues related to the electronic transport in SWNT arrays. Different aspects of these factors have been studied in detail by many groups. In fact, I have also included a brief discussion about electron injection onto semiconducting SWNTs by polymer dopants. On the other hand, we have compared the substrate-SWNT interactions for isotropic (in two dimensions) arrays of SWNTs grown on Si/SiO2 substrates and horizontally (on substrate) aligned arrays of SWNTs grown on single crystal quartz substrates. The anisotropic interactions associated with the quartz lattice between quartz and SWNTs that allow near perfect horizontal alignment on substrate along a particular crystallographic direction is examined by Raman spectroscopy, and shown to lead to uniaxial compressive strain in as-grown SWNTs on single crystal quartz. This is the first experimental demonstration of the hard-to-achieve uniaxial compression of SWNTs. Temperature dependence of Raman G-band spectra along the length of individual nanotubes reveals that the compressive strain is non-uniform and can be larger than 1% locally at room temperature. Effects of device fabrication steps on the non-uniform strain are also examined and implications on electrical performance are discussed. Based on our findings, there are discussions about device performances and designs included in this dissertation. The channel length dependences of device mobilities and on/off ratios are included for SWNT TFTs. Time response of polymer-electrolyte gated SWNT TFTs has been measured to be ~300 Hz, and a proof-of-concept logic inverter has been fabricated by using polymer electrolyte gated SWNT TFTs for macroelectronic applications. Finally, I dedicated a chapter on scalable device designs based on aligned arrays of SWNTs, including a design for SWNT memory devices.
Resumo:
Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BECs) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of 4x10(5) quantum degenerate Rb-87 atoms every 1.6 s. Ensembles of 1 x 10(5) atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.
Decoherence models for discrete-time quantum walks and their application to neutral atom experiments
Resumo:
We discuss decoherence in discrete-time quantum walks in terms of a phenomenological model that distinguishes spin and spatial decoherence. We identify the dominating mechanisms that affect quantum-walk experiments realized with neutral atoms walking in an optical lattice. From the measured spatial distributions, we determine with good precision the amount of decoherence per step, which provides a quantitative indication of the quality of our quantum walks. In particular, we find that spin decoherence is the main mechanism responsible for the loss of coherence in our experiment. We also find that the sole observation of ballistic-instead of diffusive-expansion in position space is not a good indicator of the range of coherent delocalization. We provide further physical insight by distinguishing the effects of short- and long-time spin dephasing mechanisms. We introduce the concept of coherence length in the discrete-time quantum walk, which quantifies the range of spatial coherences. Unexpectedly, we find that quasi-stationary dephasing does not modify the local properties of the quantum walk, but instead affects spatial coherences. For a visual representation of decoherence phenomena in phase space, we have developed a formalism based on a discrete analogue of the Wigner function. We show that the effects of spin and spatial decoherence differ dramatically in momentum space.
Resumo:
No âmbito do Trabalho de Investigação Aplicada foi elaborada uma caracterização fisiológica do soldado nas operações em áreas edificadas, tendo como objetivo geral contribuir para o quadro teórico e prático na área da motricidade humana, relativamente às aptidões fisiológicas, designadamente: a Frequência Cardíaca, o Consumo de Oxigénio máximo (VO2max) e o Lactato Sanguíneo. Neste estudo foi executada uma pista de combate em áreas edificadas, com o nível de dificuldade crescente, inicialmente sem e com carga (colete balístico) de seguida com o inimigo armado com airsoft e para finalizar, a esquadra de assalto com armas de airsoft. A pista desenrolou-se na Aldeia de Camões em Mafra. Para medição dos parâmetros em estudo, utilizou os monitores cardíacos Garmin Forerunner 310XT, que fornecem os valores das Frequências Cardíacas e o Lactete Plus, que nos dão os valores dos níveis de Lactato Sanguíneo. Verificou-se que não existe uma doutrina de referência que evidencie o treino físico orientado para o combate em áreas edificadas nos dias de hoje. Da análise dos resultados obtidos verificámos que a intensidade do esforço, durante a execução das pistas de combate, foi predominantemente realizada no regime anaeróbio. Com os resultados alcançados durante a realização da pista de combate, identificámos algumas das tarefas mais críticas na sua execução. Apurámos através dos níveis de lactato que a função do comandante de esquadra é de uma intensidade de esforço físico superior a exigida na restante esquadra de assalto.
Resumo:
One of the aspects related to biolaw is that related to security and health. In other words, using the expression of relevant authorities on this subject, “the securitization of health” and, those situations connected with the Security Council labour in the last decades, may constitute an interesting subject. Beginning with the role of the UN blue helmets in many countries where the expansion of HIV/AIDS is usual, followed by the expansion of some diseases in Haiti, together with the Ebola “crisis” in 2014 and connected with the efforts of the World Health Organization to fight against the zika...what is the role played by the United Nations Security Council on this field, trying to establish a relationship between security and health?
Resumo:
Does a brain store thoughts and memories the way a computer saves its files? How can a single hit or a fall erase all those memories? Brain Mapping and traumatic brain injuries (TBIs) have become widely researched fields today. Many researchers have been studying TBIs caused to adult American football players however youth athletes have been rarely considered for these studies, contradicting to the fact that American football enrolls highest number of collegiate and high-school children than adults. This research is an attempt to contribute to the field of youth TBIs. Earlier studies have related head kinematics (linear and angular accelerations) to TBIs. However, fewer studies have dealt with brain kinetics (impact pressures and stresses) occurring during head-on collisions. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop tests were conducted for linear impact accelerations and the Head Impact Contact Pressures (HICP) calculated from them were applied to a validated FE model. The results showed lateral region of the head as the most vulnerable region to damage from any drop height or impact distance followed by posterior region. The TBI tolerance levels in terms of Von-Mises and Maximum Principal Stresses deduced for lateral impact were 30 MPa and 18 MPa respectively. These levels were corresponding to 2.625 feet drop height. The drop heights beyond this value will result in TBI causing stress concentrations in human head without any detectable structural damage to the brain tissue. This data can be utilized for designing helmets that provide cushioning to brain along with providing a resistance to shear.