987 resultados para Bacteriophage T4
Resumo:
The increased prevalence of multidrug-resistant bacterial pathogens motivated us to attempt to enhance the therapeutic efficacy of bacteriophages. The therapeutic application of phages as antibacterial agents was impeded by several factors: (i) the failure to recognize the relatively narrow host range of phages; (ii) the presence of toxins in crude phage lysates; and (iii) a lack of appreciation for the capacity of mammalian host defense systems, particularly the organs of the reticuloendothelial system, to remove phage particles from the circulatory system. In our studies involving bacteremic mice, the problem of the narrow host range of phage was dealt with by using selected bacterial strains and virulent phage specific for them. Toxin levels were diminished by purifying phage preparations. To reduce phage elimination by the host defense system, we developed a serial-passage technique in mice to select for phage mutants able to remain in the circulatory system for longer periods of time. By this approach we isolated long-circulating mutants of Escherichia coli phage lambda and of Salmonella typhimurium phage P22. We demonstrated that the long-circulating lambda mutants also have greater capability as antibacterial agents than the corresponding parental strain in animals infected with lethal doses of bacteria. Comparison of the parental and mutant lambda capsid proteins revealed that the relevant mutation altered the major phage head protein E. The use of toxin-free, bacteria-specific phage strains, combined with the serial-passage technique, may provide insights for developing phage into therapeutically effective antibacterial agents.
Resumo:
Specific and processive antitermination by bacteriophage lambda N protein in vivo and in vitro requires the participation of a large number of Escherichia coli proteins (Nus factors), as well as an RNA hairpin (boxB) within the nut site of the nascent transcript. In this study we show that efficient, though nonprocessive, antitermination can be induced by large concentrations of N alone, even in the absence of a nut site. By adding back individual components of the system, we also show that N with nut+ nascent RNA is much more effective in antitermination than is N alone. This effect is abolished if N is competed away from the nut+ RNA by adding, in trans, an excess of boxB RNA. The addition of NusA makes antitermination by the N-nut+ complex yet more effective. This NusA-dependent increase in antitermination is lost when delta nut transcripts are used. These results suggest the formation of a specific boxB RNA-N-NusA complex within the transcription complex. By assuming an equilibrium model, we estimate a binding constant of 5 x 10(6) M-1 for the interaction of N alone with the transcription complex. This value can be used to estimate a characteristic dissociation time of N from the complex that is comparable to the dwell time of the complex at an average template position, thus explaining the nonprocessivity of the antitermination effect induced by N alone. On this basis, the effective dissociation rate of N should be approximately 1000-fold slower from the minimally processive (100-600 bp) N-NusA-nut+ transcription complex and approximately 10(5)-fold slower from the maximally processive (thousands of base pairs) complex containing all of the components of the in vivo N-dependent antitermination system.
Resumo:
The use of molecular genetics to introduce both a metal ion binding site and a nitroxide spin label into the same protein opens the use of paramagnetic metalnitroxyl interactions to estimate intramolecular distances in a wide variety of proteins. In this report, a His-Xaa3-His metal ion binding motif was introduced at the N terminus of the long interdomain helix of T4 lysozyme (Lys-65 --> His/Gln-69 --> His) of three mutants, each containing a single nitroxide-labeled cysteine residue at position 71, 76, or 80. The results show that Cu(II)-induced relaxation effects on the nitroxide can be quantitatively analyzed in terms of interspin distance in the range of 10-25 A using Redfield theory, as first suggested by Leigh [Leigh, J.S. (1970) J. Chem. Phys. 52, 2608-2612]. Of particular interest is the observation that distances can be determined both under rigid lattice conditions in frozen solution and in the presence of motion of the spins at room temperature under physiological conditions. The method should be particularly attractive for investigating structure in membrane proteins that are difficult to crystallize. In the accompanying paper, the technique is applied to a polytopic membrane protein, lactose permease.
Resumo:
Although enzymatic photoreactivation of cyclobutyl pyrimidine dimers in DNA is present in almost all organisms, its presence in placental mammals is controversial. We tested human white blood cells for photolyase by using three defined DNAs (supercoiled pET-2, nonsupercoiled bacteriophage lambda, and a defined-sequence 287-bp oligonucleotide), two dimer-specific endonucleases (T4 endonuclease V and UV endonuclease from Micrococcus luteus), and three assay methods. We show that human white blood cells contain photolyase that can photorepair pyrimidine dimers in defined supercoiled and linear DNAs and in a 287-bp oligonucleotide and that human photolyase is active on genomic DNA in intact human cells.
Resumo:
Insertion of foreign DNA into an established mammalian genome can extensively alter the patterns of cellular DNA methylation. Adenovirus type 12 (Ad12)-transformed hamster cells, Ad12-induced hamster tumor cells, or hamster cells carrying integrated DNA of bacteriophage lambda were used as model systems. DNA methylation levels were examined by cleaving cellular DNA with Hpa II, Msp I, or Hha I, followed by Southern blot hybridization with 32P-labeled, randomly selected cellular DNA probes. For several, but not all, cellular DNA segments investigated, extensive increases in DNA methylation were found in comparison with the methylation patterns in BHK21 or primary Syrian hamster cells. In eight different Ad12-induced hamster tumors, moderate increases in DNA methylation were seen. Increased methylation of cellular genes was also documented in two hamster cell lines with integrated Ad12 DNA without the Ad12-transformed phenotype, in one cloned BHK21 cell line with integrated plasmid DNA, and in at least three cloned BHK21 cell lines with integrated lambda DNA. By fluorescent in situ hybridization, the cellular hybridization probes were located to different hamster chromosomes. The endogenous intracisternal A particle genomes showed a striking distribution on many hamster chromosomes, frequently on their short arms. When BHK21 hamster cells were abortively infected with Ad12, increases in cellular DNA methylation were not seen. Thus, Ad12 early gene products were not directly involved in increasing cellular DNA methylation. We attribute the alterations in cellular DNA methylation, at least in part, to the insertion of foreign DNA. Can alterations in the methylation profiles of hamster cellular DNA contribute to the generation of the oncogenic phenotype?
Resumo:
Most helicases studied to date have been characterized as oligomeric, but the relation between their structure and function has not been understood. The bacteriophage T7 gene 4 helicase/primase proteins act in T7 DNA replication. We have used electron microscopy, three-dimensional reconstruction, and protein crosslinking to demonstrate that both proteins form hexameric rings around single-stranded DNA. Each subunit has two lobes, so the hexamer appears to be two-tiered, with a small ring stacked on a large ring. The single-stranded DNA passes through the central hole of the hexamer, and the data exclude substantial wrapping of the DNA about or within the protein ring. Further, the hexamer binds DNA with a defined polarity as the smaller ring of the hexamer points toward the 5' end of the DNA. The similarity in three-dimensional structure of the T7 gene 4 proteins to that of the Escherichia coli RuvB helicase suggests that polar rings assembled around DNA may be a general feature of numerous hexameric helicases involved in DNA replication, transcription, recombination, and repair.
Resumo:
Transcription of downstream genes in the early operons of phage lambda requires a promoter-proximal element known as nut. This site acts in cis in the form of RNA to assemble a transcription antitermination complex which is composed of lambda N protein and at least four host factors. The nut-site RNA contains a small stem-loop structure called boxB. Here, we show that boxB RNA binds to N protein with high affinity and specificity. While N binding is confined to the 5' subdomain of the stem-loop, specific N recognition relies on both an intact stem-loop structure and two critical nucleotides in the pentamer loop. Substitutions of these nucleotides affect both N binding and antitermination. Remarkably, substitutions of other loop nucleotides also diminish antitermination in vivo, yet they have no detectable effect on N binding in vitro. These 3' loop mutants fail to support antitermination in a minimal system with RNA polymerase (RNAP), N, and the host factor NusA. Furthermore, the ability of NusA to stimulate the formation of the RNAP-boxB-N complex is diminished with these mutants. Hence, we suggest that boxB RNA performs two critical functions in antitermination. First, boxB binds to N and secures it near RNAP to enhance their interaction, presumably by increasing the local concentration of N. Second, boxB cooperates with NusA, most likely to bring N and RNAP in close contact and transform RNAP to the termination-resistant state.