1000 resultados para BIOLOGICAL SHIELDING


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Acinetobacter sp. metsäteollisuuden jätevesien biologisessa fosforinpoistossa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of injecting agonistic and antagonistic analogues of gonadotropin releasing hormone analogues on serum testosterone levels was checked in adult and immature male bonnet monkeys. Of the agonistic analogues Buserelin, Ovurelin and D-Phe6 Gln8 GnRH were found to be most potent in increasing serum testosterone levels in the adult male bonnet monkeys. While 27-month-old monkeys responded well to des Gly10 GnRH, only marginal response was observed in the case of 15-month-old monkeys. Studies carried out with Ovurelin indicated that it was not effective in causing desensitization in adult monkeys. The antagonistic analogue was effective in blocking nocturnal surge of serum testosterone. Based on these studies it is suggested the adult male bonnet monkeys can be effectively used for testing the activity of GnRH analogues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt is made to present some challenging problems (mainly to the technically minded researchers) in the development of computational models for certain (visual) processes which are executed with, apparently, deceptive ease by the human visual system. However, in the interest of simplicity (and with a nonmathematical audience in mind), the presentation is almost completely devoid of mathematical formalism. Some of the findings in biological vision are presented in order to provoke some approaches to their computational models, The development of ideas is not complete, and the vast literature on biological and computational vision cannot be reviewed here. A related but rather specific aspect of computational vision (namely, detection of edges) has been discussed by Zucker, who brings out some of the difficulties experienced in the classical approaches.Space limitations here preclude any detailed analysis of even the elementary aspects of information processing in biological vision, However, the main purpose of the present paper is to highlight some of the fascinating problems in the frontier area of modelling mathematically the human vision system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cysteine residues in proteins serve many important functions such as stabilizing and maintaining the three-dimensional conformation of many proteins(1), in enzyme catalysis, as a residue undergoing post-translational 2 and in the formation of DNA-binding modification domain of a class of transcriptional activators(3), It is also involved in biological redox coupling(4) and xenobiotic metabolism(5). Disulphide bonds formed by xenobiotic metabolism oxidation of cysteine residues have been used as a probe to study the structure/function relationships of proteins, Introducing novel disulphide bonds in proteins to increase their thermal stability and, therefore, the shelf life is an important goal of protein engineering(6,7), In addition, the thiol group of cysteine residue participates in a reaction termed as thiol/disulphide exchange reaction, the biological significance of this reaction being the theme of this review.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a procedure is presented for the reconstruction of biological organs from image sequences obtained through CT-scan. Although commercial software, which can accomplish this task, are readily available, the procedure presented here needs only free software. The procedure has been applied to reconstruct a liver from the scan data available in literature. 3D biological organs obtained this way can be used for the finite element analysis of biological organs and this has been demonstrated by carrying out an FE analysis on the reconstructed liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levamisole, the imidazo2,1-b]thiazole derivative has been reported as a potential antitumor agent. In the present study, we synthesized, characterized and evaluated biological activity of its novel analogues with substitution in the aralkyl group and on imidazothiadiazole molecules with same chemical backbone but different side chains namely 2-aralkyl-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]thiadiazoles (SCR1), 2-aralkyl-5-bromo-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-thiadiaz oles (SCR2), 2-aralkyl-5-formyl-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-thiadia zoles (SCR3) and 2-aralkyl-5-thiocyanato-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-th iadiazoles (SCR4) on leukemia cells. The cytotoxic studies showed that 3a, 4a, and 4c exhibited strong cytotoxicity while others had moderate cytotoxicity. Among these we chose 4a (IC50, 8 mu M) for understanding its mechanism of cytotoxicity. FACS analysis in conjunction with mitochondrial membrane potential and DNA fragmentation studies indicated that 4a induced apoptosis without cell cycle arrest suggesting that it could be used as a potential chemotherapeutic agent. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selenium analogue of antithyroid drug methimazole (MSeI) reacts with molecular bromine to produce two different types of novel complexes depending upon the molar ratio of MSeI to Br-2 in the reaction medium: Dicationic diselenide complex with two Br- ions as counterions is produced in the reaction of MSeI with 0.5 equiv of Br-2 (MSeI/Br-2, 1.0:0.5), whereas a stable 10-Se-3 hypervalent ``T-shaped'' complex featuring a linear Br-Se-Br moiety was produced when MSeI was treated with Br-2 in an equimolar ratio (MSeI/Br-2, 1.0:1.0). A substitution at the free N-H group in MSeI alters its reactivity toward iodine/bromine. For example, the N,N-disubstituted selones exclusively produce the corresponding 10-Se-3 hypervalent ``T-shaped'' complexes in the reaction with I-2. In the presence of the lectoperoxidase/H2O2/I- system, N,N-dimethylimidazole-2-selone produces the corresponding dicationic diselenide with two I- counterions as the final metabolite. The formation of ionic species in these reactions is confirmed by single crystal X-ray diffraction studies and in some cases by Fourier transform-Raman spectroscopic investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.