956 resultados para BETA-D-FRUCTOFURANOSIDASE
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor-beta (TGF-beta) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF-beta and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF-beta in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF-beta significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures.
Resumo:
INTRODUCTION: The large increase in the number of athletes who apply to use inhaled beta agonists (IBAs) at the Olympic Games is a concern to the medical community. This review will examine the use of IBAs in the asthmatic athlete, the variability that exists between countries and sport, and outline a plan to justify the use of these medications. DATA SOURCES: Much of this article is a result of an International Olympic Committee (IOC) Medical Commission-sponsored meeting that took place in May 2001. Records of the use of IBAs at previous Olympics were reviewed. MEDLINE Searches (PubMed interface) were performed using key words to locate published work relating to asthma, elite athletes, performance, treatment, and ergogenic aids. MAIN RESULTS: Since 1984 there have been significant increases in the use of IBAs at the Olympic Games as well as marked geographical differences in the percentage of athletes requesting the use of IBAs. There are large differences in the incidence of IBA use between sports with a trend towards increased use in endurance sports. There are no ergogenic effects of any IOC-approved IBA given in a therapeutic dose. CONCLUSIONS: In many cases, the prescription of IBAs to this population has been made on empirical grounds. Beginning with the 2002 Winter Games, athletes will be required to submit to the IOC Medical Commission clinical and laboratory evidence that justifies the use of this medication. The eucapnic voluntary hyperpnea test will be used to assess individuals who have not satisfied an independent medical panel of the need to use an IBA.
Resumo:
Chlamydia trachomatis is a bacterial pathogen responsible for one of the most prevalent sexually transmitted infections worldwide. Its unique development cycle has limited our understanding of its pathogenic mechanisms. However, CtHtrA has recently been identified as a potential C. trachomatis virulence factor. CtHtrA is a tightly regulated quality control protein with a monomeric structural unit comprised of a chymotrypsin-like protease domain and two PDZ domains. Activation of proteolytic activity relies on the C-terminus of the substrate allosterically binding to the PDZ1 domain, which triggers subsequent conformational change and oligomerization of the protein into 24-mers enabling proteolysis. This activation is mediated by a cascade of precise structural arrangements, but the specific CtHtrA residues and structural elements required to facilitate activation are unknown. Using in vitro analysis guided by homology modeling, we show that the mutation of residues Arg362 and Arg224, predicted to disrupt the interaction between the CtHtrA PDZ1 domain and loop L3, and between loop L3 and loop LD, respectively, are critical for the activation of proteolytic activity. We also demonstrate that mutation to residues Arg299 and Lys160, predicted to disrupt PDZ1 domain interactions with protease loop LC and strand β5, are also able to influence proteolysis, implying their involvement in the CtHtrA mechanism of activation. This is the first investigation of protease loop LC and strand β5 with respect to their potential interactions with the PDZ1 domain. Given their high level of conservation in bacterial HtrA, these structural elements may be equally significant in the activation mechanism of DegP and other HtrA family members.
Resumo:
Gac fruits were physically measured and stored under ambient conditions for up to 2 weeks to observe changes in carotenoid contents (lycopene and beta carotene) in its aril. Initial concentrations in the aril of lycopene were from 2.378 mg/g fresh weight (FW) to 3.728 mg/g FW and those of beta carotene were from 0.257 to 0.379 mg/g FW. Carotenoid concentrations in the aril remained stable after 1 week but sharply declined after 2 weeks of storage. Gac oil, pressed from gac aril, has similar concentrations of lycopene and beta carotene (2.436 and 2.592 mg/g, respectively). Oil was treated with 0.02% of butylated hydroxytoluene, or with a stream of nitrogen or untreated then stored in the dark for up to 15 or 19 weeks under different temperatures (5 °C, ambient, 45 and 60 °C). Lycopene and beta carotene in control gac oil degraded following the first-order kinetic model. The degradation rate of lycopene and beta carotene in the treated oil samples were lower than that in the control oil but the first-order kinetic was not always followed. However, both lycopene and beta carotene degraded quickly in gac oil with the first-order kinetic under high temperature conditions (45 and 60 °C) regardless of the treatments used. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
A single-step solid-phase RIA (SS-SPRIA) developed in our laboratory using hybridoma culture supernatants has been utilised for the quantitation of epitope-paratope interactions. Using SS-SPRIA as a quantitative tool for the assessment of epitope stability, it was found that several assembled epitopes of human chorionic gonadotropin (hCG) are differentially stable to proteolysis and chemical modification. Based on these observations an approach has been developed for identifying the amino acid residues constituting an epitopic region. This approach has now been used to map an assembled epitope at/near the receptor binding region of the hormone. The mapped site forms a part of the seat belt region and the cystine knot region (C34-C38-C88-C90-H106). The carboxy terminal region of the alpha-subunit forms a part of the epitope indicating its proximity to the receptor binding region. These results are in agreement with the reported receptor binding region identified through other approaches and the X-ray crystal structure of hCG.
Resumo:
Texture evolution in a low cost beta titanium alloy was studied for different modes of rolling and heat treatments. The alloy was cold rolled by unidirectional and multi-step cross rolling. The cold rolled material was either aged directly or recrystallized and then aged. The evolution of texture in alpha and beta phases were studied. The rolling texture of beta phase that is characterized by the gamma fiber is stronger for MSCR than UDR; while the trend is reversed on recrystallization. The mode of rolling affects alpha transformation texture on aging with smaller alpha lath size and stronger alpha texture in UDR than in MSCR. The defect structure in beta phase influences the evolution of a texture on aging. A stronger defect structure in beta phase leads to variant selection with the rolled samples showing fewer variants than the recrystallized samples.
Resumo:
The mode of action of xylanase and beta-glucosidase purified from the culture filtrate of Humicola lanuginosa (Griffon and Maublanc) Bunce on the xylan extracted from sugarcane bagasse and on two commercially available larchwood and oat spelt xylans, on xylooligomers and on arabinoxylooligomers was studied. While larchwood and oat spelt xylans were hydrolyzed to the same extent in 24 h, sugarcane bagasse xylan was hydrolyzed to a lesser extent in the same period. It was found that the rate of hydrolysis of xylooligomers by xylanase increased with increase in chain length, while beta-glucosidase acted rather slowly on all the oligomers tested. Xylanase exhibited predominant ''endo'' action on xylooligomers attacking the xylan chain at random while beta-glucosidase had ''exo'' action, releasing one xylose residue at a time. On arabinoxylooligomers, however, xylanase exhibited ''exo'' action. Thus, it appears that the presence of the arabinose substituent has, in some way, rendered the terminal xylose-xylose linkage more susceptible to xylanase action. It was also observed that even after extensive hydrolysis with both the enzymes, substantial amounts of the parent arabinoxylooligomer remained unhydrolyzed together with the accumulation of arabinoxylobiose. It can therefore be concluded that the presence of the arabinose substituent in the xylan chain results in linkages that offer resistance to both xylanase and beta-glucosidase action.
Resumo:
To correlate the Raman frequencies of the amide I and III bands to beta-turn structures, three peptides shown to contain beta-turn structure by x-ray diffraction and NMR were examined. The compounds examined were tertiary (formula: see text). The amide I band of these compounds is seen at 1,668, 1,665, and 1,677 cm-1, and the amide III band appears at 1,267, 1,265, and 1,286 cm-1, respectively. Thus, it is concluded that the amide I band for type III beta-turn structure appears in the range between 1,665 and 1,677 cm-1 and the amide III band between 1,265 and 1,286 cm-1.
Resumo:
The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.
Resumo:
Table beet production in the Lockyer Valley of south-eastern Queensland is known to be adversely affected by soilborne root disease from infection by Pythium spp. However, little is known regarding the species or genotypes that are the causal agents of both pre- and post-emergence damping off. Based on RFLP analysis with HhaI, HinfI and MboI of the PCR amplified ITS region DNA from soil and diseased plant samples, the majority of 130 Pythium isolates could be grouped into three genotypes, designated LVP A, LVP B and LVP C. These groups comprised 43, 41 and 7% of all isolates, respectively. Deoxyribonucleic acid sequence analysis of the ITS region indicated that LVP A was a strain of Pythium aphanidermatum, with greater than 99% similarity to the corresponding P. aphanidermatum sequences from the publicly accessible databases. The DNA sequences from LVP B and LVP C were most closely related to P. ultimum and P. dissotocum, respectively. Lower frequencies of other distinct isolates with unique RFLP patterns were also obtained with high levels of similarity (>97%) to P. heterothallicum, P. periplocum and genotypes of P. ultimum other than LVP B. Inoculation trials of 1- and 4-week-old beet seedlings indicated that compared with isolates of the LVP B genotype, a higher frequency of LVP A isolates caused disease. Isolates with the LVP A, LVP B and LVP C genotypes were highly sensitive to the fungicide Ridomil MZ, which suppressed radial growth on V8 agar between approximately four and thirty fold at 5 μg/mL metalaxyl and 40 μg/mL mancozeb, a concentration far lower than the recommended field application rate.
Resumo:
A method to identify β-sheets in globular proteins from extended strands, using only α-carbon positions, has been developed. The strands that form β-sheets are picked up by means of simple distance criteria. The method has been tested by applying it to three proteins with accurately known secondary structures. It has also been applied to ten other proteins wherein only α-carbon coordinates are available, and the list of β-sheets obtained. The following points are worth noting: (i) The sheets identified by the algorithm are found to agree satisfactorily with the reported ones based on backbone hydrogen bonding, wherever this information is available. (ii) β-Strands that do not form parts of any sheet are a common feature of protein structures. (iii) Such isolated β-strands tend to be short. (iv) The conformation corresponding to the preferred right-handed twist of the sheet is overwhelmingly observed in both the sheet-forming and isolated β-strands.
Resumo:
A Monte Carlo study along with experimental uptake measurements of 1,2,3-trimethyl benzene, 1,2,4-trimethyl benzene and 1,3,5-trimethyl benzene (TMB) in beta zeolite is reported. The TraPPE potential has been employed for hydrocarbon interaction and harmonic potential of Demontis for modeling framework of the zeolite. Structure, energetics and dynamics of TMB in zeolite beta from Monte Carlo runs reveal interesting information about the diameter, properties of these isomers on confinement. Of the three isomers, 135TMB is supposed to have the largest diameter. It is seen TraPPE with Demontis potential predicts a restricted motion of 135TMB in the channels of zeolite beta.Experimentally, 135TMB has the highest transport diffusivity whereas MID results suggest this has the lowest self diffusivity. (C) 2009 Elsevier Inc. Ail rights reserved.
Resumo:
The drift mobility of photoexcited holes in single-crystal beta-AgI has been measured between 260 and 312 °K. In this range the drift mobility µd increased with temperature due to trap-limited behavior. At 300 °K µd=12 cm2/V sec, the concentration and energy of the dominant traps being given by Nt=3×109 to 5×109/cm3 and Et=0.52 to 0.50 eV, respectively. Electron drift mobilities could not be determined due to low electron lifetimes. Journal of Applied Physics is copyrighted by The American Institute of Physics.