362 resultados para B3LYP
Resumo:
Disordered and crystalline Mn-doped BaTiO3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn,) and disordered BTO:Mn (BTO:Mn-d) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Ca0.95Sm0.05TiO3 (CT:Sm) powder was prepared by the polymeric precursor method (PPM). Order-disorder at short and long range has been investigated by means of Raman spectroscopy, X-ray diffraction (XRD), and photoluminescence emission (PL) experimental techniques. The broad PL band and the Sm emission spectrum measured at room temperature indicate the increase of structural order with annealing temperature. The measured PL emission reveals that the PL intensity changes with the degree of disorder in the CT: Sm. The electronic structures were performed by the ab initio periodic method in the DFT level with the hybrid nonlocal B3LYP approximation. Theoretical results are analyzed in terms of DOS, charge densities, and Mulliken charges. Localized levels into the band gap of the CT: Sm material favor the creation of the electron-hole pair, supporting the observed room-temperature PL phenomenon.
Resumo:
Strong photoluminescent emission has been measured at room temperature for noncrystalline BaT'O-3 (BT) perovskite powders. A joint experimental and theoretical study has been carried out to rationalize this phenomenon. From the experimental side, BT powder samples have been synthesized following a soft chemical processing, their crystal structure has been confirmed by x-ray data and the corresponding photoluminescence (PL) properties have been measured. Only the structurally disordered samples present PL at room temperature. From the theoretical side, first-principles quantum-mechanical techniques, based on density-functional theory at the B3LYP level, have been employed to study the electronic structure of crystalline (BT-c) and asymmetric (BT-a) models. Theoretical and experimental results are found to be consistent and their confrontation leads to an interpretation of the PL apparition at room temperature in the structurally disordered powders.
Resumo:
The nature of intense visible photoluminescence at room temperature of SrWO4 (SWO) non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The SWO thin films were synthesized by the polymeric precursors method. Their structural properties have been obtained by X-ray diffraction data and the corresponding photoluminescence (PL) spectra have been measured. The UV-vis optical spectra measurements suggest the creation of localized states in the disordered structure. The photoluminescence measurements reveal that the PL changes with the degree of disorder in the SWO thin film. To understand the origin of visible PL at room temperature in disordered SWO, we performed quantum-mechanical calculations on crystalline and disordered SWO periodic models. Their electronic structures are analyzed in terms of DOS, hand dispersion and charge densities. We used DFT method with the hybrid non-local B3LYP approximation. The polarization induced by the symmetry break and the existence of localized levels favors the creation of trapped holes and electrons, giving origin to the room temperature photoluminescence phenomenon in the SWO thin films. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize for the first time the photoluminescence (PL) properties of disordered CaWO4 (CWO) thin films. From the experimental side, thin films of CWO have been synthesized following a soft chemical processing, their structure has been confirmed by X-ray diffraction data and corresponding PL properties have been measured using the 488 nm line of an argon ion laser. Although we observe PL at room temperature for the crystalline thin films, the structurally disordered samples present much more intense emission. From the theoretical side, first principles quantum mechanical calculations, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline (CWO-c) and asymmetric (CWO-a) periodic model. Electronic properties are analyzed in the light of the experimental results and their relevance in relation to the PL behavior of CWO is discussed. The symmetry breaking process on going from CWO-c to CWO-a creates localized electronic levels above the valence band and a negative charge transfer process takes place from threefold, WO3, to fourfold, WO4,. tungsten coordinations. The correlation of both effects seems to be responsible for the PL of amorphous CWO. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The structural and electronic properties of SrZrO3 selected surfaces were investigated by means of density functional theory applied to periodic calculations at B3LYP level. The relaxation effects for two symmetric and asymmetric terminations are analyzed. The electronic and energy band properties are discussed on the basis of band structure as well density of states. There is a more significant rumpling in the SrO as compared to the ZrO2 terminated surfaces. The calculated indirect gap is 4.856, 4.562, 4.637 eV for bulk, ZrO2 and asymmetric terminations, respectively. The gap becomes direct; 4.536 eV; for SrO termination. The contour in the (110) diagonal plane indicates a partial covalent character between Zr and 0 atoms for the SrO terminated surface. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
(1) C6H2N3O7- center dot C5H12NO2+, Mr = 346.26, P2(1)/c, a = 7.2356(6), b = 10.5765(9), c = 19.593(2) angstrom, 3 beta=95.101(6)degrees, V = 1493.5(2) angstrom(3), Z = 4, R-1 = 0.0414; (2) C6H2N3O7- center dot C6H8NO+, Mr = 38.24, P2(1)/n, a = 7.8713(5), b = 6.1979(7), c = 28.697(3) angstrom, beta = 90.028(7)degrees, V = 1400.0(2) angstrom(3), Z = 4, R-1 = 0.0416. The packing units in both compounds consist of hydrogen bonded cation-anion pairs. The (hyper)polarizabilities have been calculated for the crystallographic and optimized molecules, by AM1 and at the DFT/B3LYP(6-31G**) level.
Resumo:
The molecular mechanisms of the reaction VO2+ ((1)A(1)/(3)A'') + C2H6 ((1)A(g)) to yield V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) + C2H4 ((1)A(g)) and/or VO+ ((1)Delta/(3)Sigma) + H2O ((1)A(1)) + C2H4 (Ag-1) have been investigated with density functional theory (DFT) at the B3LYP/6-311G(2d,p) level. Calculations including geometry optimization, vibrational analysis, and Gibbs free energy for the stationary points on the reactive potential energy surfaces at both the singlet (s) and first excited triplet (t) electronic states have been carried out. The most thermodynamically and kinetically favorable pathway is the formation of t-V(OH)(2)(+) + C2H4 along a four-step molecular mechanism (insertion, two consecutive hydrogen transfers, and elimination). A crossing point between s and t electronic states has been characterized. A comparison with previous works on VO2+ + C2H4 (Gracia et al. J. Phys. Chem. A 2003, 107, 3107-3120) and VO2+ + C3H8 (Engeser et al. Organometallics 2003, 22, 3933-3943) reactions allows us a rationalization of the different reactivity patterns. The catalytic role of water molecules in the tautomerization process between hydrated oxide cation, VO(H2O)(+,) and dihydroxide cation, V(OH)(2)(+), is achieved by a water-assisted mechanism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Generator Coordinate Hartree-Fock (GCHF) method is employed to generate uncontracted 15s and 18s11p gaussian basis sets for the H, C and O atoms, respectively. These basis sets are then contracted to 3s and 4s H atom and 6s5p, for C and O atoms by a standard procedure. For quality evaluation of contracted basis sets in molecular calculations, we have accomplished calculations of total and orbital energies in the Hartree-Fock-Roothaaii (HFR) approach for CH, C(2) and CO molecules. The results obtained with the uncontracted basis sets are compared with values obtained with the standard D95, 6-311G basis sets and with values reported in the literature. The 4s and 6s5p basis sets are enriched with polarization and diffuse functions for atoms of the parent neutral systems and of the enolates anions (cycloheptanone enolate, 2,5-dimethyleyelopentanone enolate, 4-heptanone enolate, and di-isopropyl ketone enolate) from the literature, in order to assess their performance in ab initio molecular calculations, and applied for calculations of electron affinities of the enolates. The calculations were performed at the DFT (BLYP and B3LYP) and HF levels and compared with the corresponding experimental values and with those obtained by using other 6-3 1 + +G((*)) and 6-311 + +G((*)) basis sets from literature. For the enolates studied, the differences between the electron affinities obtained with GCHF basis sets, at the B3LYP level, and the experimental values are -0.001, -0,014, -0.001, and -0.001 eV. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The structural and electronic properties of ZnO (10 (1) over bar0) and (11 (2) over bar0) surfaces were investigated by means of density functional theory applied to periodic calculations at B3LYP level. The stability and relaxation effects for both surfaces were analyzed. The electronic and energy band properties were discussed on the basis of band structure as well as density of states. There is a significant relaxation in the (10 (1) over bar0) as compared to the (11 (2) over bar0) terminated surfaces. The calculated direct gap is 3.09, 2.85, and 3.09 eV for bulk, (10 (1) over bar0), and (11 (2) over bar0) surfaces, respectively. The band structures for both surfaces are very similar.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (I 10), (0 10), (10 1) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For, comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximate to (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.
Resumo:
Structural characterization by NMR spectroscopy and DFT calculations was performed for two dimeric naptho-gamma-pyrones, the polyketides Aurasperone A and Fonsecinone A. Experimental data ((13)C NMR chemical shifts and interatomic geometries) were found to be in reasonable agreement with theoretical ones, obtained at B3LYP level for three different basis sets (6-31G/6-31G(d)/6-31G(d,p)). Additionally, the dipolar moments calculation allowed explaining the different solubility for these molecules. The (13)C NMR theoretical chemical shifts were calculated with the GIAO method and the solvent effects were taken into account by means of the PCM approximation. In this work, the DFT/GIAO methodology shows to be a reliable tool in the assignment of experimental NMR chemical shifts of similar molecules. (C) 2008 Wiley Periodicals, Inc. Int J Quantum Chem 108: 2408-2416, 2008.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)