948 resultados para Average Run Length (ARL), Bayesian Estimation, Control Chart, g-and-k Distributions, Non-normality
Resumo:
BACKGROUND: The estimation of physiologic ability and surgical stress (E-PASS) has been used to produce a numerical estimate of expected mortality and morbidity after elective gastrointestinal surgery. The aim of this study was to validate E-PASS in a selected cohort of patients requiring liver resections (LR). METHODS: In this retrospective study, E-PASS predictor equations for morbidity and mortality were applied to the prospective data from 243 patients requiring LR. The observed rates were compared with predicted rates using Fisher's exact test. The discriminative capability of E-PASS was evaluated using receiver-operating characteristic (ROC) curve analysis. RESULTS: The observed and predicted overall mortality rates were both 3.3% and the morbidity rates were 31.3 and 26.9%, respectively. There was a significant difference in the comprehensive risk scores for deceased and surviving patients (p = 0.043). However, the scores for patients with or without complications were not significantly different (p = 0.120). Subsequent ROC curve analysis revealed a poor predictive accuracy for morbidity. CONCLUSIONS: The E-PASS score seems to effectively predict mortality in this specific group of patients but is a poor predictor of complications. A new modified logistic regression might be required for LR in order to better predict the postoperative outcome.
Resumo:
The outbreak of foot and mouth disease (FMD) in Great Britain in 2001 let to discussions and especially emergency vaccination was deemed as an alternative to the culling of vast numbers of healthy animals. The project emergency vaccination for FMD in Switzerland was conducted to compare the effectiveness of conventional control strategies during a FMD outbreak alone and with ring vaccination of 3 km and 10 km, respectively. The results of this project showed that emergency vaccination conducted at the beginning of an epidemic was not favorable compared to conventional disease control strategy in Switzerland. In case of an advanced FMD epidemic, a 10 km ring vaccination could support the disease control in a positive way. However, the goal of emergency vaccination to save animal live can hardly be achieved due to actual legal basis and the consequent restriction measures within vaccination zones which will lead to welfare culling.
Resumo:
The scaphoid is the most frequently fractured carpal bone. When investigating fixation stability, which may influence healing, knowledge of forces and moments acting on the scaphoid is essential. The aim of this study was to evaluate cartilage contact forces acting on the intact scaphoid in various functional wrist positions using finite element modeling. A novel methodology was utilized as an attempt to overcome some limitations of earlier studies, namely, relatively coarse imaging resolution to assess geometry, assumption of idealized cartilage thicknesses and neglected cartilage pre-stresses in the unloaded joint. Carpal bone positions and articular cartilage geometry were obtained independently by means of high resolution CT imaging and incorporated into finite element (FE) models of the human wrist in eight functional positions. Displacement driven FE analyses were used to resolve inter-penetration of cartilage layers, and provided contact areas, forces and pressure distribution for the scaphoid bone. The results were in the range reported by previous studies. Novel findings of this study were: (i) cartilage thickness was found to be heterogeneous for each bone and vary considerably between carpal bones; (ii) this heterogeneity largely influenced the FE results and (iii) the forces acting on the scaphoid in the unloaded wrist were found to be significant. As major limitations, accuracy of the method was found to be relatively low, and the results could not be compared to independent experiments. The obtained results will be used in a following study to evaluate existing and recently developed screws used to fix scaphoid fractures.
Resumo:
AIMS/HYPOTHESIS In diabetes mellitus type I, good glycaemic control is crucial in preventing long-term diabetic complications. The aim of this study was to determine the current level of metabolic control in children and adolescents in our diabetes outpatient clinic at the University Children's Hospital, Berne. Furthermore, the impact of different factors such as age, pubertal stage, sex, duration of diabetes and insulin regimen on glycaemic control was studied. METHODS In a cross-sectional, prospective study 168 children and adolescents with type I diabetes mellitus (f:m = 87:81; prepubertal 48 [mean age 4.4 years, mean duration of diabetes 2.8 years]; pubertal 120 [mean age 9.4 years; mean duration of diabetes 5.2 years]) were studied for three months. Clinical data and HbA1c levels (latex immunoagglutination test) were recorded, statistically analysed and compared with the international literature. RESULTS In our type I diabetic children and adolescents the overall HbA1c was 8.07 +/- 1.15% (mean +/- SD; test-specific norm for healthy subjects: 4.1-6.1%). Glycaemic control was significantly worse in the pubertal group compared to the prepubertal (HbA1c 8.22 +/- 1.25% vs. 7.81 +/- 0.87%; p < 0.01). In addition, we found better metabolic control in patients with duration of diabetes below 2 years in children and adolescents (HbA1c prepubertal < 2 years: 7.45 +/- 0.67% vs. > 2 years: 8.05 +/- 0.93%, p < 0.05; pubertal < 2 years: 7.62 +/- 0.75% vs. > 2 years: 8.31 +/- 1.29%, p < 0.005). Importantly, sex and insulin regimen did not significantly influence glycaemic control. CONCLUSION/INTERPRETATION The current level of metabolic control in our children and adolescents with diabetes mellitus type I is comparable to the glycaemic control of the intensively treated adolescent group of the DCCT-study, in whom decreased risk of long-term diabetic complications was found. In contrast, our patients were intensively treated in terms of frequent contacts with the diabetes team, but were not necessarily on an intensified insulin regimen. The impact of biopsychosocial support from multidisciplinary diabetes team on good metabolic control in children and adolescents with type I diabetes mellitus and their families seems to be very important.
Resumo:
Much of the craniofacial skeleton, such as the skull vault, mandible and midface, develops through direct, intramembranous ossification of the cranial neural crest (CNC) derived progenitor cells. Bmp-signaling plays critical roles in normal craniofacial development, and Bmp4 deficiency results in craniofacial abnormalities, such as cleft lip and palate. We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in the CNC. Conditional Bmp4 overexpression, using a tetracycline regulated Bmp4 gain of function allele, resulted in facial form changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4 induced genes (BIG) composed predominantly of transcriptional regulators controlling self-renewal, osteoblast differentiation, and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4, and Bmp7, resulted in complete or partial loss of multiple CNC derived skeletal elements revealing a critical requirement for Bmp-signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss of function mutants indicating similar Bmp-regulated target genes underlying facial form modulation and normal skeletal morphogenesis. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45g and Gata3 that was bound by Smad1/5 in the developing mandible revealing direct, Smad-mediated regulation. These data indicate that Bmp-signaling regulates craniofacial skeletal development and facial form by balancing self-renewal and differentiation pathways in CNC progenitors.
Resumo:
BACKGROUND: Enhancing physical activity in overweight and obese individuals is an important means to promote health in this target population. The Health Action Process Approach (HAPA), which was the theoretical framework of this study, focuses on individual self-regulation variables for successful health behavior change. One key self-regulation variable of this model is action control with its three subfacets awareness of intentions, self-monitoring and regulatory effort. The social context of individuals, however, is usually neglected in common health behavior change theories. In order to integrate social influences into the HAPA, this randomized controlled trial investigated the effectiveness of a dyadic conceptualization of action control for promoting physical activity. METHODS/DESIGN: This protocol describes the design of a single-blind randomized controlled trial, which comprises four experimental groups: a dyadic action control group, an individual action control group and two control groups. Participants of this study are overweight or obese, heterosexual adult couples who intend to increase their physical activity. Blocking as means of a gender-balanced randomization is used to allocate couples to conditions and partners to either being the target person of the intervention or to the partner condition. The ecological momentary intervention takes place in the first 14 days after baseline assessment and is followed by another 14 days diary phase without intervention. Follow-ups are one month and six months later. Subsequent to the six-months follow-up another 14 days diary phase takes place.The main outcome measures are self-reported and accelerometer-assessed physical activity. Secondary outcome measures are Body Mass Index (BMI), aerobic fitness and habitual physical activity. DISCUSSION: This is the first study examining a dyadic action control intervention in comparison to an individual action control condition and two control groups applying a single-blind randomized control trial. Challenges with running couples studies as well as advantages and disadvantages of certain design-related decisions are discussed. This RCT was funded by the Swiss National Science Foundation (PP00P1_133632/1) and was registered on 27/04/2012 at http://www.isrctn.com/ISRCTN15705531.
Resumo:
We demonstrate how redox control of intra-molecular quantum interference in phase-coherent molecular wires can be used to enhance the thermopower (Seebeck coefficient) S and thermoelectric figure of merit ZT of single molecules attached to nanogap electrodes. Using first principles theory, we study the thermoelectric properties of a family of nine molecules, which consist of dithiol-terminated oligo (phenylene-ethynylenes) (OPEs) containing various central units. Uniquely, one molecule of this family possesses a conjugated acene-based central backbone attached via triple bonds to terminal sulfur atoms bound to gold electrodes and incorporates a fully conjugated hydroquinonecentral unit. We demonstrate that both S and the electronic contribution Z el T to the figure of merit ZT can be dramatically enhanced by oxidizing the hydroquinone to yield a second molecule, which possesses a cross-conjugated anthraquinone central unit. This enhancement originates from the conversion of the pi-conjugation in the former to cross-conjugation in the latter, which promotes the appearance of a sharp anti-resonance at the Fermi energy. Comparison with thermoelectric properties of the remaining seven conjugated molecules demonstrates that such large values of S and Z el T are unprecedented. We also evaluate the phonon contribution to the thermal conductance, which allows us to compute the full figure of merit ZT = Z el T/(1 + κ p/κ el), where κ p is the phonon contribution to the thermal conductance and κ el is the electronic contribution. For unstructured gold electrodes, κ p/κ el Gt⃒ 1 and therefore strategies to reduce κ p are needed to realize the highest possible figure of merit.
Resumo:
Instruments for on-farm determination of colostrum quality such as refractometers and densimeters are increasingly used in dairy farms. The colour of colostrum is also supposed to reflect its quality. A paler or mature milk-like colour is associated with a lower colostrum value in terms of its general composition compared with a more yellowish and darker colour. The objective of this study was to investigate the relationships between colour measurement of colostrum using the CIELAB colour space (CIE L*=from white to black, a*=from red to green, b*=from yellow to blue, chroma value G=visual perceived colourfulness) and its composition. Dairy cow colostrum samples (n=117) obtained at 4·7±1·5 h after parturition were analysed for immunoglobulin G (IgG) by ELISA and for fat, protein and lactose by infrared spectroscopy. For colour measurements, a calibrated spectrophotometer was used. At a cut-off value of 50 mg IgG/ml, colour measurement had a sensitivity of 50·0%, a specificity of 49·5%, and a negative predictive value of 87·9%. Colostral IgG concentration was not correlated with the chroma value G, but with relative lightness L*. While milk fat content showed a relationship to the parameters L*, a*, b* and G from the colour measurement, milk protein content was not correlated with a*, but with L*, b*, and G. Lactose concentration in colostrum showed only a relationship with b* and G. In conclusion, parameters of the colour measurement showed clear relationships to colostral IgG, fat, protein and lactose concentration in dairy cows. Implementation of colour measuring devices in automatic milking systems and milking parlours might be a potential instrument to access colostrum quality as well as detecting abnormal milk.
Resumo:
The results of a search for hydrogen-like atoms consisting of π∓K±π∓K± mesons are presented. Evidence for πK atom production by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen in terms of characteristic πK pairs from their breakup in the same target (178±49178±49) as well as in terms of produced πK atoms (653±42653±42). Using these results, the analysis yields a first value for the πK atom lifetime of View the MathML sourceτ=(2.5−1.8+3.0) fs and a first measurement of the S-wave isospin-odd πK scattering length View the MathML source|a0−|=13|a1/2−a3/2|=(0.11−0.04+0.09)Mπ−1 (aIaI for isospin I).
Resumo:
We present new algorithms for M-estimators of multivariate scatter and location and for symmetrized M-estimators of multivariate scatter. The new algorithms are considerably faster than currently used fixed-point and related algorithms. The main idea is to utilize a second order Taylor expansion of the target functional and to devise a partial Newton-Raphson procedure. In connection with symmetrized M-estimators we work with incomplete U-statistics to accelerate our procedures initially.
Resumo:
The Connecticut Poison Control Center (CPCC) at the University of Connecticut Health Center (UCHC) was established in 1957 under Connecticut General Statute 10a- 132. The CPCC’s main responsibility is to provide 24-hour emergency toxicology management consultations for victims of poisoning, and serve as a source for pharmacology and toxicology-related information. The center monitors the epidemiology of human poisoning and provides surveillance for environmental and occupational chemical exposures, drug abuse, and pharmaceutical interactions and adverse effects. The CPCC performs toxicological research, and provides formal toxicology instruction for allied health professionals, as well as professional and consumer poison prevention education. The CPCC is one of 63 nationwide centers certified by the American Association of Poison Control Centers (AAPCC), and the only poison center in the state of Connecticut. The AAPCC establishes standards of care for poisoning and administers the Toxic Exposure Surveillance System (TESS), a national database of poisoning statistics, to which the CPCC is a contributor.