925 resultados para Autonomous robotics
Resumo:
Navigation is a broad topic that has been receiving considerable attention from the mobile robotic community over the years. In order to execute autonomous driving in outdoor urban environments it is necessary to identify parts of the terrain that can be traversed and parts that should be avoided. This paper describes an analyses of terrain identification based on different visual information using a MLP artificial neural network and combining responses of many classifiers. Experimental tests using a vehicle and a video camera have been conducted in real scenarios to evaluate the proposed approach.
Resumo:
In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The context of this report and the IRIDIA laboratory are described in the preface. Evolutionary Robotics and the box-pushing task are presented in the introduction.The building of a test system supporting Evolutionary Robotics experiments is then detailed. This system is made of a robot simulator and a Genetic Algorithm. It is used to explore the possibility of evolving box-pushing behaviours. The bootstrapping problem is explained, and a novel approach for dealing with it is proposed, with results presented.Finally, ideas for extending this approach are presented in the conclusion.
Resumo:
The national railway administrations in Scandinavia, Germany, and Austria mainly resort to manual inspections to control vegetation growth along railway embankments. Manually inspecting railways is slow and time consuming. A more worrying aspect concerns the fact that human observers are often unable to estimate the true cover of vegetation on railway embankments. Further human observers often tend to disagree with each other when more than one observer is engaged for inspection. Lack of proper techniques to identify the true cover of vegetation even result in the excess usage of herbicides; seriously harming the environment and threating the ecology. Hence work in this study has investigated aspects relevant to human variationand agreement to be able to report better inspection routines. This was studied by mainly carrying out two separate yet relevant investigations.First, thirteen observers were separately asked to estimate the vegetation cover in nine imagesacquired (in nadir view) over the railway tracks. All such estimates were compared relatively and an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05). Bearing in difference between the observers, a second follow-up field-study on the railway tracks was initiated and properly investigated. Two railway segments (strata) representingdifferent levels of vegetationwere carefully selected. Five sample plots (each covering an area of one-by-one meter) were randomizedfrom each stratumalong the rails from the aforementioned segments and ten images were acquired in nadir view. Further three observers (with knowledge in the railway maintenance domain) were separately asked to estimate the plant cover by visually examining theplots. Again an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05) confirming the result from the first investigation.The differences in observations are compared against a computer vision algorithm which detects the "true" cover of vegetation in a given image. The true cover is defined as the amount of greenish pixels in each image as detected by the computer vision algorithm. Results achieved through comparison strongly indicate that inconsistency is prevalent among the estimates reported by the observers. Hence, an automated approach reporting the use of computer vision is suggested, thus transferring the manual inspections into objective monitored inspections
Resumo:
Determining the provenance of data, i.e. the process that led to that data, is vital in many disciplines. For example, in science, the process that produced a given result must be demonstrably rigorous for the result to be deemed reliable. A provenance system supports applications in recording adequate documentation about process executions to answer queries regarding provenance, and provides functionality to perform those queries. Several provenance systems are being developed, but all focus on systems in which the components are textitreactive, for example Web Services that act on the basis of a request, job submission system, etc. This limitation means that questions regarding the motives of autonomous actors, or textitagents, in such systems remain unanswerable in the general case. Such questions include: who was ultimately responsible for a given effect, what was their reason for initiating the process and does the effect of a process match what was intended to occur by those initiating the process? In this paper, we address this limitation by integrating two solutions: a generic, re-usable framework for representing the provenance of data in service-oriented architectures and a model for describing the goal-oriented delegation and engagement of agents in multi-agent systems. Using these solutions, we present algorithms to answer common questions regarding responsibility and success of a process and evaluate the approach with a simulated healthcare example.
Resumo:
A system built in terms of autonomous agents may require even greater correctness assurance than one which is merely reacting to the immediate control of its users. Agents make substantial decisions for themselves, so thorough testing is an important consideration. However, autonomy also makes testing harder; by their nature, autonomous agents may react in different ways to the same inputs over time, because, for instance they have changeable goals and knowledge. For this reason, we argue that testing of autonomous agents requires a procedure that caters for a wide range of test case contexts, and that can search for the most demanding of these test cases, even when they are not apparent to the agents’ developers. In this paper, we address this problem, introducing and evaluating an approach to testing autonomous agents that uses evolutionary optimization to generate demanding test cases.
Resumo:
Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.
Resumo:
With the constant grow of enterprises and the need to share information across departments and business areas becomes more critical, companies are turning to integration to provide a method for interconnecting heterogeneous, distributed and autonomous systems. Whether the sales application needs to interface with the inventory application, the procurement application connect to an auction site, it seems that any application can be made better by integrating it with other applications. Integration between applications can face several troublesome due the fact that applications may not have been designed and implemented having integration in mind. Regarding to integration issues, two tier software systems, composed by the database tier and by the “front-end” tier (interface), have shown some limitations. As a solution to overcome the two tier limitations, three tier systems were proposed in the literature. Thus, by adding a middle-tier (referred as middleware) between the database tier and the “front-end” tier (or simply referred application), three main benefits emerge. The first benefit is related with the fact that the division of software systems in three tiers enables increased integration capabilities with other systems. The second benefit is related with the fact that any modifications to the individual tiers may be carried out without necessarily affecting the other tiers and integrated systems and the third benefit, consequence of the others, is related with less maintenance tasks in software system and in all integrated systems. Concerning software development in three tiers, this dissertation focus on two emerging technologies, Semantic Web and Service Oriented Architecture, combined with middleware. These two technologies blended with middleware, which resulted in the development of Swoat framework (Service and Semantic Web Oriented ArchiTecture), lead to the following four synergic advantages: (1) allow the creation of loosely-coupled systems, decoupling the database from “front-end” tiers, therefore reducing maintenance; (2) the database schema is transparent to “front-end” tiers which are aware of the information model (or domain model) that describes what data is accessible; (3) integration with other heterogeneous systems is allowed by providing services provided by the middleware; (4) the service request by the “frontend” tier focus on ‘what’ data and not on ‘where’ and ‘how’ related issues, reducing this way the application development time by developers.