917 resultados para Automatic Control Theory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

El braç robot es va crear com a resposta a una necessitat de fabricació d’elements mitjançant la producció en cadena i en tasques que necessiten precisió. Hi ha, però, altres tipus de tasques les quals no són repetitives, ni poden ésser programades, que necessiten però ser controlades en tot moment per un ésser humà. Són activitats que han d’estar realitzades per un ésser humà, però que requereixen molta precisió, és per això que es creu necessari el disseny d’un prototipus de control d’un braç robot estàndard, que permeti a una persona el control total sobre aquest en temps real per a la realització d’una tasca no repetitiva i no programable prèviament. Pretenem, en el present projecte, dissenyar i construir un braç robot de 5 graus de llibertat, controlat des d’un PC mitjançant un microcontrolador PIC amb comunicació a través d’un bus USB. El robot serà governat des d’un PC a través d’un software de control específic

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El GREP (grup de recerca de producte, procés i producció) de la UdG actualment disposa d’una eina informàtica desenvolupada en un PFC del 2003 que li permet fer la seqüenciació de la producció d’un taller mecànic amb un màxim de cinc productes, un nombre definit de possibles rutes de fabricació per a cada producte i tres màquines. Aquesta eina és molt resolutiva per a aquests casos, ja que estudia totes les possibilitats i les comprova una per una. No obstant aquest fet presenta una sèrie de limitacions com són el temps d’execució doncs al comprovar totes les seqüències té un elevat cost computacional i la rigidesa del sistema doncs no ens permet seqüenciar més productes ni més màquines. Per tal de donar solució a aquest problema es planteja generar una nova eina informàtica a partir de l’actual però que permeti seqüenciar més peces sense ocupar tanta memòria per així implementar-hi futures millores com el temps de preparació etc... Per a desenvolupar l’eina informàtica s’han utilitzat mètodes heurístics, concretament dos que són: algoritmes genètics i cerca TABU. Aquests mètodes destaquen perquè no busquen totes les combinacions possibles sinó que estudien una sèrie de combinacions i utilitzant mètodes de creuament i generació d’entorns busquen una solució

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L' ús de tècniques de la intel·ligència artificial per a la detecció, la diagnòsi i control d' errors

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, robustness of parametric systems is analyzed using a new approach to interval mathematics called Modal Interval Analysis. Modal Intervals are an interval extension that, instead of classic intervals, recovers some of the properties required by a numerical system. Modal Interval Analysis not only simplifies the computation of interval functions but allows semantic interpretation of their results. Necessary, sufficient and, in some cases, necessary and sufficient conditions for robust performance are presented

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En problemes d'assignació de recursos, normalment s'han de tenir en compte les incerteses que poden provocar canvis en les dades inicials. Aquests canvis dificulten l'aplicabilitat de les planificacions que s'hagin fet inicialment. Aquesta tesi se centra en l'elaboració de tècniques que consideren la incertesa alhora de cercar solucions robustes, és a dir solucions que puguin continuar essent vàlides encara que hi hagi canvis en l'entorn. Particularment, introduïm el concepte de robustesa basat en reparabilitat, on una solució robusta és una que pot ser reparada fàcilment en cas que hi hagi incidències. La nostra aproximació es basa en lògica proposicional, codificant el problema en una fórmula de satisfactibilitat Booleana, i aplicant tècniques de reformulació per a la generació de solucions robustes. També presentem un mecanisme per a incorporar flexibilitat a les solucions robustes, de manera que es pugui establir fàcilment el grau desitjat entre robustesa i optimalitat de les solucions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.