960 resultados para Augustus, Emperor of Rome, 63 B.C.-14 A.D.
Resumo:
Objectives: To investigate the molecular epidemiology of HIV in China's Yunnan Province, where the initial HIV-1 outbreak among injecting drug users (IDU) occurred in 1989, and to analyse the genesis and interrelationship of the epidemic with that in surrounding areas. Design: A molecular epidemiological investigation was conducted among IDU in three prefectures in Yunnan Province, including Wenshan (east), Honghe (southeast) and Dehong (west). Methods: Thirty-nine specimens were collected from consenting IDU in 2000-2001. The nucleotide sequences of 2.6 kb gag-RT and 340 base pair (bp) env (C2/V3) regions were determined. Phylogenetic tree and recombination breakpoint analyses were performed. Results: The circulating recombinant form (CRF), CRF08_BC, predominated in east Yunnan near Guangxi Province (89% in Wenshan and 81% in Honghe), whereas it was not detected in Dehong(0/14) in the west. In contrast, 71% (10/14) of the Dehong isolates were unique recombinant forms (URF), mostly between subtypes B' (Thailand variant of subtype B) and C, with distinct profiles of recombination breakpoints. The subtype B' accounts for the remaining 29% (4/14) of Dehong isolates. Interestingly, two Honghe isolates (2/16) shared some of the precise B'/C recombination breakpoints with CRF07_BC. Conclusion: New recombinant strains are arising continually in west Yunnan near the Myanmar border. Some appeared to be secondary recombinants derived from CRF07_BC that had further recombined with other strains. The uneven distribution of subtypes, CRF and URF, suggests the presence of independent transmission networks and clusters among IDU in Yunnan. (C) 2002 Lippincott Williams Wilkins.
Resumo:
A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 C to 145 C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. The Authors. © 2013 Published by Elsevier B.V. All rights reserved.
Resumo:
AMPS simulator, which was developed by Pennsylvania State University, has been used to simulate photovoltaic performances of nc-Si:H/c-Si solar cells. It is shown that interface states are essential factors prominently influencing open circuit voltages (V-OC) and fill factors (FF) of these structured solar cells. Short circuit current density (J(SC)) or spectral response seems more sensitive to the thickness of intrinsic a-Si:H buffer layers inserted into n(+)-nc-Si:H layer and p-c-Si substrates. Impacts of bandgap offset on solar cell performances have also been analyzed. As DeltaE(C) increases, degradation of VOC and FF owing to interface states are dramatically recovered. This implies that the interface state cannot merely be regarded as carrier recombination centres, and impacts of interfacial layer on devices need further investigation. Theoretical maximum efficiency of up to 31.17% (AM1.5,100mW/cm(2), 0.40-1.1mum) has been obtained with BSF structure, idealized light-trapping effect(R-F=0, R-B=1) and no interface states.
Resumo:
Properties for the ground state of C-9 are studied in the relativistic continuum Hartree-Bogoliubov theory with the NLSH, NLLN and TM2 effective interactions. Pairing correlations are taken into account by a density-dependent delta-force with the pairing strength for protons determined by fitting either to the experimental binding energy or to the odd-even mass difference from the five-point formula. The effects of pairing correlations on the formation of proton halo in the ground state of C-9 are examined. The halo structure is shown to be formed by the partially occupied valence proton levels p(3/2) and p(1/2).
Molecular vibration spectroscopy study of irradiation effect in C-60 films induced by low energy ion
Resumo:
Irradiation effect in C-60 films induced by 170 keV B ion was investigated by means of Fourier transform infrared (FTIR) and Raman spectroscopies. The damage cross section sigma and the effective damage radius R are deduced from the experimental data of all four IR active modes and evident four Raman active modes of C-60 molecule. The differences on irradiation sensitivity and structural stability of the different active modes of C-60 molecule are compared. The results indicate that T-1u (4) of infrared active mode and A(g) (1) of Raman active mode are most sensitive for B ion irradiation. On the other hand T-1u (2) of infrared active mode and H-g (3) of Raman active mode are comparatively stable under B ion irradiation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3512968]
Resumo:
An improved aqueous impregnation method was used to prepare 40 wt% Pt/C electrocatalysts. TEM analysis of the samples showed that the Pt particles impregnated for a short time have a very narrow size distribution in the range of 1-4 nm with an average size of 2.6 nm. UV-vis spectroscopy measurements verified that the redox reaction between PtCl62- and formaldehyde took place with a slow rate at ambient temperature via a two-step reaction path, where PtCl42- serves as an intermediate. The use of the short-time-impregnated 40 wt% Pt/C as cathode electrocatalysts in direct methanol fuel cells yields better performance than that of commercial 40 wt% Pt/C electrocatalyst. Experimental evidence provides clues for the fundamental understanding of elementary steps of the redox reactions, which helps in guiding the design and preparation of highly dispersed Pt catalyst for fuel cells.
Resumo:
The triblock copolymers, poly(styrene-b-isoprene-b-epsilon-caprolactone)s (PS-b-PI-b-PCL) have been synthesized successfully by combination of anionic polymerization and ring-opening polymerization. Diblock copolymer capped with hydroxyl group, PS-b-PI-OH was synthesized by sequential- anionic polymerization of styrene and isoprene and following end-capping reaction of EO, and then it was used as macro initiator in the ring-opening polymerization of CL. The results of DSC and WAXD show big effect of amorphous PS-b-PI on the thermal behaviors of PCL block in the triblock copolymers and the lower degree of crystalline in the triblock copolymer with higher molecular weight of PS-b-PI was observed. The real-time observation on the polarized optical microscopy shows the spherulite growth rates of PCL27, PCL328 and PS-b-PI-b-PCL344 are 0.71, 0.46 and 0.07 mu m s(-1), respectively. The atomic force microscopy (AFM) images of the PS90-b-PI66-b-PCL-(28) show the columns morphology formed by it's self-assembling.
Resumo:
Vacuum ultraviolet excitation spectra of LnAl(3)B(4)O(12):Re (Ln = Y, Gd; Re = Eu, To), along with X-ray photoelectron spectra, were measured. The spectra are tentatively interpreted in terms of the optical properties of the rare earth ions and the band structure. It was found that there is an energy transfer from the hosts to the rare earth ions. It was also found that the top of the valence band in the Gd compound is mainly formed by the 2p levels of O2- and the 4f levels of Gd3+, and in the Y compound mainly by the 2p levels of O2-. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Well-defined block copolymers of L-lactide-b-epsilon-caprolactone were synthesized by sequential polymerization using a rare earth complex, Y(CF3COO)(3)/Al(iso-Bu)(3), as catalyst system. The compositions of the block copolymers could be adjusted by manipulating the feeding ratio of comonomers. The characterizations by GPC, H-1 NMR, C-13 NMR, and DSC displayed that the block copolymer, poly(epsilon-caprolactone-b-L-lactide) [P(CL-b-LLA)], had a narrow molecular weight distribution and well-controlled sequences without random placement.
Resumo:
The compatibilization effect of poly(styrene-b-2-ethyl-2-oxazoline) diblock copolymer, P(S-b-EOx), on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(ethylene-co-acrylic acid) (EAA) is examined in terms of phase structure and thermal, rheological and mechanical properties, and its compatibilizing mechanism is investigated by Fourier-transform infrared spectroscopy. The block copolymer, synthesized by a mechanism transformation copolymerization, is used in solution blending of PPO/EAA. Scanning electron micrographs show that the blends exhibit a more regular and finer dispersion on addition of a small amount of P(S-b-EOx). Thermal analysis indicates that the grass transition of PPO and the lower endothermic peal; of EAA components become closer on adding P(S-b-EOx), and the added diblock copolymer is mainly located at the interface between the PPO and EAA phases. The interfacial tension estimated by theological measurement is significantly reduced on addition of a small amount of P(S-b-EOx). The tensile strength and elongation at break increase with the addition of the diblock copolymer for PPO-rich blends, whereas the tensile strength increases but the elongation at break decreases for EAA-rich blends. This effect is interpreted in terms of interfacial activity and the reinforcing effect of the diblock copolymer, and it is concluded that the diblock copolymer plays a role as an effective compatibilizer for PPO/EAA blends. The specific interaction between EAA and polar parts of P(S-b-EOx) is mainly hydrogen bonding. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The interaction of [(C(5)H(4)R)(2)NdCl.2LiCl] (R = H, Bu(t)) with one equivalent of Li[(CH2)(CH2)PPh(2)] in refluxing tetrahydrofuran gave the purplish-blue complex [(C(5)H(4)R)(3)NdCH2P(Me)Ph(2)] in 50% yield. The compounds have been fully characterized by analytical, spectroscopic and X-ray diffraction methods. Variable temperature P-31{H-1} NMR spectroscopy indicated the existence of the following equilibrium: [(C(5)H(4)R)(3)NdCH2P(Me)Ph(2)] + THF reversible arrow (C(5)H(4)R)(3)Nd(THF) + CH2=P(Me)Ph(2). At room temperature, the exchange between the coordinated and free ylide ligand is slow on the NMR time scale.
Resumo:
Davison G, Gleeson M, 2006. The effect of 2 weeks vitamin C supplementation on immunoendocrine responses to 2.5 h cycling exercise in man. European Journal of Applied Physiology 97(4): 454-461 RAE2008
Resumo:
The ground state structure of C(4N+2) rings is believed to exhibit a geometric transition from angle alternation (N < or = 2) to bond alternation (N > 2). All previous density functional theory (DFT) studies on these molecules have failed to reproduce this behavior by predicting either that the transition occurs at too large a ring size, or that the transition leads to a higher symmetry cumulene. Employing the recently proposed perspective of delocalization error within DFT we rationalize this failure of common density functional approximations (DFAs) and present calculations with the rCAM-B3LYP exchange-correlation functional that show an angle-to-bond-alternation transition between C(10) and C(14). The behavior exemplified here manifests itself more generally as the well known tendency of DFAs to bias toward delocalized electron distributions as favored by Huckel aromaticity, of which the C(4N+2) rings provide a quintessential example. Additional examples are the relative energies of the C(20) bowl, cage, and ring isomers; we show that the results from functionals with minimal delocalization error are in good agreement with CCSD(T) results, in contrast to other commonly used DFAs. An unbiased DFT treatment of electron delocalization is a key for reliable prediction of relative stability and hence the structures of complex molecules where many structure stabilization mechanisms exist.