697 resultados para Atpase
Resumo:
The genes encoding type II DNA topoisomerases were investigated in Giardia lamblia genome, and a type IIA gene, GlTop 2 was identified. It is a single copy gene with a 4476 by long ORF without intron. The deduced amino acid sequence shows strong homology to eukaryotic DNA Top 2. However, some distortions were found, such as six insertions in the ATPase domain and the central domain, a similar to 100 as longer central domain; a similar to 200 as shorter C-terminal domain containing rich charged residues. These features revealed by comparing with Top 2 of the host, human, might be helpful in exploiting drug selectivity for antigiardial therapy. Phylogenetic analysis of eukaryotic enzymes showed that kinetoplastids, plants, fungi, and animals were monophyletic groups, and the animal and fungi lineages shared a more recent common ancestor than either did with the plant lineage; microsporidia grouped with fungi. However, unlike many previous phylogenetic analyses, the "amitochondriate" G. lamblia was not the earliest branch but diverged after mitochondriate kinetoplastids in our trees. Both the finding of typical eukaryotic type IIA topoisomerase and the phylogenetic analysis suggest G. lamblia is not possibly as primitive as was regarded before and might diverge after the acquisition of mitochondria. This is consistent with the recent discovery of mitochondrial remnant organelles in G. lamblia.
Resumo:
To investigation of the toxic effects of atrazine on newly hatched larvae and releasing age fry of the Caspian Kutum, Rutilus frisii kutum, the 96h LC50 was determined as 18.53 ppm and 24.95 ppm, respectively. Newly hatched larvae were exposed to three sublethal concentrations of atrazine (1/2LC50, 1/4LC50 and 1/8LC50) for 7 days. Different histopathological alterations were observed in fins and integument, gills, Kidney, digestive system, liver and the brain of the exposed larvae. Fry’s were exposed to one sublethal concentration of atrazine (1/2LC50) for four days, and like the larvae’s, many histopathological alterations were observed in fins and integument, gills, Kidney, digestive system, liver and the brain of the exposed fry’s, too. Also, measurements of the body ions: Na+, K+, Ca2+, Mg2+ and Cl- in atrazine exposed larvae and fry’s compare to control groups showed that atrazine is changed the body ions composition. No significant differences were found in length growth rate, weight growth rate and the condition factor of the atrazine exposed larvae and fry. Immunohistochemical localization of the Na+, K+-ATPase in integumentary and gill ionocytes, showed no differences in dispersion pattern of the ionocytes in atrazine exposed larvae and fry, compare to control group. Measuring the dimensions of the ionocytes and counting the ionocytes showed that atrazine is affecting on ionocytes by mild increasing in size and mild decreasing in number. Ultrastructural studies, using SEM and TEM, showed that atrazine have significant effects on cellular and subcellular properties. It caused necrosis in surface of the pavement cells in branchial epithelium, necrosis in endoplasmic reticulum of the ionocytes and changed the shape of the mitochondria in these cells. Results showed that sublethal concentrations of atrazine were very toxic to larvae and fry of the Rutilus frisii kutum, and at these levels can made some serious histopathological alterations in their tissues. Related to the severe histopathological alterations in osmoregulatory organs, like gill, kidney and digestive system, and the alterations in the body ion composition, it could be concluded that atrazine could interfere with the osmoregulation process of the Rutilus frisii kutum at the early stages of the life history.
Resumo:
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Resumo:
通过测定典型的多环芳烃类物质苯并(a)芘(BaP)致毒后鱼体内几种重要分子生态毒理学指标的变化,来反映苯并(a)芘致毒对鱼体的影响.结果表明,肝脏ATPase活性降低,GST活性升高,DNA加合物相对标记水平(RAL)也增大,而EROD活性没有明显改变.这说明苯并(a)芘致毒对鱼体正常生命活动产生了重大影响,并具有潜在的致癌性.
Resumo:
通过回转器模拟微重力刺激实验 ,以盐生杜氏藻为试验材料 ,发现在微重力刺激下 ,盐生杜氏藻细胞及其生理生化特性发生了一系列的变化 .具体表现为甘油含量增加 ;H+分泌速率加快 ;膜磷脂与膜蛋白比率下降 ;质膜 (PM )H+ ATPase活性升高等 .这些变化表明 ,微重力环境对藻类来说是一个耗能胁迫环境 .微重力对藻细胞代谢特性的影响可能是通过次级的水分胁迫而产生的
Resumo:
在回转器模拟微重力刺激导致盐生杜氏藻细胞代谢特性变化的基础上,通过几种代谢抑制剂和激活剂的实验及其结果分析,发现细胞质膜可能是盐生杜氏藻细胞最直接的微重力感受体;质膜磷脂-蛋白、PMH+-ATPase、膜电位、Ca2+及钙调蛋白在其信号传导与响应过程中起到重要的作用.构建了盐生杜氏藻对微重力刺激感受、传导与响应的初步模型.
Resumo:
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Resumo:
Iron is an essential trace element for biological requirements of phytoplankton. Effects of iron on physiological and biochemical characteristics of Microcystis wesenbergii were conducted in this study. Results showed that 0.01 mu M [Fe3+] seriously inhibited growth and chlorophyll synthesis of M. wesenbergii, and induced temporary increase of ATPase activities, however, NR. ACP and ALP activities were restrained by iron limitation. Interestingly, iron addition on day 8 resulted in the gradual restoration of structures and functions of above enzymes and resisted a variety of stresses from iron limitation. M. wesenbergii in 10 mu M [Fe3+] treatment group grew normally. enzymes maintained normal levels, and residual phosphate contents in cultures first sharply decreased, then smoothly as M. wesenbergii has a characteristic of luxury consumption of phosphorus. Above parameters in 100 mu M [Fe3+] treatment group were almost same with those in 10 mu M [Fe3+] treatment group except for NR, ACP and ALP activities. In 100 mu M [Fe3+] treatment group, activities of ACP and ALP had temporary increase because phosphate and ferric iron could form insoluble compound - ferric phosphate (Fe3PO4) through adsorption effect. resulting in lack of bioavailable phosphate in culture media. The experiment suggested that too low or too high iron can affect obviously physiological and biochemical characteristics of M. wesenbergii.
Resumo:
This study examined the toxic effects of microcystins on mitochondria of liver and heart of rabbit in vivo. Rabbits were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 12.5 and 50 MCLReq. mu g/kg bw, and the changes in mitochondria of liver and heart were studied at 1, 3,12, 24 and 48 h after injection. MCs induced damage of mitochondrial morphology and lipid peroxidation in both liver and heart. MCs influenced respiratory activity through inhibiting NADH dehydrogenase and enhancing succinate dehydrogenase (SDH). MCs altered Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of mitochondria and consequently disrupted ionic homeostasis, which might be partly responsible for the loss of mitochondrial membrane potential (MMP). MCs were highly toxic to mitochondria with more serious damage in liver than in heart. Damage of mitochondria showed reduction at 48 h in the low dose group, suggesting that the low dose of MCs might have stimulated a compensatory response in the rabbits. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effects of salt stress on carbohydrate metabolism in Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crusts, were investigated in the present study. Extracellular total carbohydrates and exopolysaccharides (EPS) in the culture medium produced by M. vaginatus increased significantly during the growth phase and reached a maximum during the stationary phase. The production of extracellular carbohydrates also significantly increased under higher salt concentrations, which was attributed to an increase in low molecular weight carbohydrates. In the presence of NaCl, the production of cellular total carbohydrates decreased and photosynthetic activity was impaired, whereas cellular reducing sugars, water-soluble sugars and sucrose content and sucrose phosphate synthase activity increased, reaching a maximum in the presence of 200 mmol/L NaCl. These parameters were restored to original levels when the algae were transferred to a non-saline medium. Sodium and K+ concentrations of stressed cells decreased significantly and H+-ATPase activity increased after the addition of exogenous sucrose or EPS. The results suggest that EPS and sucrose are synthesized to maintain the cellular osmotic equilibrium between the intra- and extracellular environment, thus protecting algal cells from osmotic damage, which was attributed to the selective exclusion of cellular Na+ and K+ by H+-ATPase.
Resumo:
Clinorotation experiments were established to simulate microgravity on ground. It was found that there were obvious changes of Dunaliella salina FACHB435 cells and their metabolic characteristics during clinorotation. The changes included the increases of glycerol content, the rate of H+ secretion and PM H+-ATPase activity, and the decrease of ratio of the plasma membrane (PM) phospholipid to PM protein. These results indicated that microgravity was a stress environment to Dunaliella salina. It is deduced that it would be possible to attribute the effect of microgravity on algal cells to the secondary activation of water stress.
Resumo:
以贾第虫、毛滴虫、内变形虫和微抱子虫等为代表的几类原生生物,不仅因为他们的寄生致病性而在医学上长期备受关注,它们的进化地位也是一个十分令人注目的问题。因为曾认为它们不具线粒体等细胞器,再加上一些分子系统学研究表明它们处在真核生物的最基部,因此不少人认为它们是在线粒体产生之前即已分化的极原始真核生物,其进化地位是处在原核生物向真核生物的过渡阶段,并有人称之为achezoa。这一发现一度被认为对探讨真核细胞(生物)的起源进化极为重要,是进化生物学上的重要突破。然而,近年来不断有新的证据对此提出质疑,其进化地位也就存在较大争议。本文首先利用PCR扩增、测序和基因组数据库搜索等技术方法鉴定了蓝氏贾第虫(Giardialamblia)、阴道毛滴虫(Trichomonasvaginalis)和痢疾内变形虫(entamoebahistolytica)的II型DNA拓扑异构酶基因序列。RT-PCR和序列分析表明它们均不具内含子。蛋白质序列搜索的结果表明它们与其它真核生物的DNA拓扑异构酶H是高度同源的。用生物信息学的方法,我们还对这些酶的性质进行了初步分析。分析还表明蓝氏贾第虫的DNA拓扑异构酶H具有一些不同于其.宿主的特征,如在ATPase区和中间区有六个插入,中间区要长大约100个氨基酸,而C端区又短大约200个氨基酸且富含带电荷的氨基酸残基。这些结果对研制以该酶为靶分子的专一性抗贾第虫药物具有指导意义。其次,将上述获得的序列数据结合GenBank数据库中已有的脑炎微抱子虫(Encephalitozooncuniculi)和其它一系列处在不同进化地位的真核生物的相应序列数据,用多种方法构建出分子系统树,对这些"无线粒体"原生生物的进化地位进行了探讨,并对"长枝吸引"对系统树的影响进行了分析。结果表明,由于DNA拓扑异构酶H的特点和可以克服"长枝吸引"等以往分子系统分析中的不足,所构建的系统树不仅能有效地反映出已普遍接受的真核生物各主要类群的系统关系,而且显示出这些"无线粒体"原生动物不同于以前系统树所反映的进化地位:它们并非是最早分支出来的真核生物,而是在具有线粒体的生物如动基体类或菌虫类等之后才分化的、分别属于不同进化地位的类群。结合近来它们中发现了类似线粒体细胞器等证据,我们认为这些所谓"无线粒体"的原生生物虽然其中有些种类(如以贾第虫为代表的双滴虫类)进化地位很低等,对探讨真核细胞的早期进化具有一定意义,但总体上它们并非过去所认为的那么极端原始,它们应该是线粒体产生之后才分别分化出来的不同生物类群
Resumo:
近年来,随着温室气体体积分数不断上升,研究CO2和O3体积分数升高对植物的影响已取得一定进展,但二者对植物的复合作用及生理研究不够深入。文章利用开顶式气室研究了大气CO2和O3体积分数升高对银杏(Ginkgo biloba L.)光合特性的影响。结果表明,在整个生长季内,与对照相比,在大气CO2体积分数为700×10-6条件下,银杏叶片净光合速率显著增加(P<0.05),希尔反应活力增大,Ca2+/Mg2+-ATPase活性增强,光合产物可溶性糖和淀粉含量增多;而在O3体积分数为80×10-9的情况下,银杏叶片净光合速率下降,希尔反应活力减小,Ca2+/Mg2+-ATPase活性减弱,光合产物可溶性糖和淀粉含量减少;在CO2和O3复合作用(700×10-6+80×10-9)条件下,银杏叶片净光合速率、希尔反应活力、可溶性糖和淀粉均有所增加,且淀粉含量增加极显著(P<0.01),而Ca2+-ATPase活性先增强后减弱,Mg2+-ATPase活性先减弱后增强。说明CO2可缓解O3对银杏的负效应,而O3亦对CO2的正效应有削弱作用。
Resumo:
毫秒延迟发光测定结果表明低温弱光处理黄瓜叶片导致类囊体原位 (in situ)耦联度显著降低。DCCD可以恢复低温弱光处理的黄瓜叶片的毫秒延迟发光的慢相强度和反映类囊体膜质子吸收的 9- AA(9- Aminoacridine)荧光猝灭能力 ,说明类囊体耦联度降低的原因是质子由 CF0 大量快速渗漏。进一步研究结果表明 ,活性氧和 CF1的脱落不是低温弱光引起黄瓜类囊体耦联度降低的根本原因。