874 resultados para Asymmetric Gene Flow
Resumo:
Abstract: Movements away from the natal or home territory are important to many ecological processes, including gene flow, population regulation, and disease epidemiology, yet quantitative data on these behaviors are lacking. Red foxes exhibit 2 periods of extraterritorial movements: when an individual disperses and when males search neighboring territories for extrapair copulations during the breeding season. Using radiotracking data collected at 5-min interfix intervals, we compared movement parameters, including distance moved, speed of movement, and turning angles, of dispersal and reproductive movements to those made during normal territorial movements; the instantaneous separation distances of dispersing and extraterritorial movements to the movements of resident adults; and the frequency of locations of 95%, 60%, and 30% harmonic mean isopleths of adult fox home territories to randomly generated fox movements. Foxes making reproductive movements traveled farther than when undertaking other types of movement, and dispersal movements were straighter. Reproductive and dispersal movements were faster than territorial movements and also differed in intensity of search and thoroughness. Foxes making dispersal movements avoided direct contact with territorial adults and moved through peripheral areas of territories. The converse was true for reproductive movements. Although similar in some basic characteristics, dispersal and reproductive movements are fundamentally different both behaviorally and spatially and are likely to have different ultimate purposes and contrasting effects on spatial processes such as disease transmission
Resumo:
An updated empirical approach is proposed for specifying coexistence requirements for genetically modified (GM) maize (Zea mays L.) production to ensure compliance with the 0.9% labeling threshold for food and feed in the European Union. The model improves on a previously published (Gustafson et al., 2006) empirical model by adding recent data sources to supplement the original database and including the following additional cases: (i) more than one GM maize source field adjacent to the conventional or organic field, (ii) the possibility of so-called “stacked” varieties with more than one GM trait, and (iii) lower pollen shed in the non-GM receptor field. These additional factors lead to the possibility for somewhat wider combinations of isolation distance and border rows than required in the original version of the empirical model. For instance, in the very conservative case of a 1-ha square non-GM maize field surrounded on all four sides by homozygous GM maize with 12 m isolation (the effective isolation distance for a single GM field), non-GM border rows of 12 m are required to be 95% confident of gene flow less than 0.9% in the non-GM field (with adventitious presence of 0.3%). Stacked traits of higher GM mass fraction and receptor fields of lower pollen shed would require a greater number of border rows to comply with the 0.9% threshold, and an updated extension to the model is provided to quantify these effects.
Resumo:
An evidence-based review of the potential impact that the introduction of genetically-modified (GM) cereal and oilseed crops could have for the UK was carried out. The inter-disciplinary research project addressed the key research questions using scenarios for the uptake, or not, of GM technologies. This was followed by an extensive literature review, stakeholder consultation and financial modelling. The world area of canola, oilseed rape (OSR) low in both erucic acid in the oil and glucosinolates in the meal, was 34M ha in 2012 of which 27% was GM; Canada is the lead producer but it is also grown in the USA, Australia and Chile. Farm level effects of adopting GM OSR include: lower production costs; higher yields and profits; and ease of farm management. Growing GM OSR instead of conventional OSR reduces both herbicide usage and environmental impact. Some 170M ha of maize was grown in the world in 2011 of which 28% was GM; the main producers are the USA, China and Brazil. Spain is the main EU producer of GM maize although it is also grown widely in Portugal. Insect resistant (IR) and herbicide tolerant (HT) are the GM maize traits currently available commercially. Farm level benefits of adopting GM maize are lower costs of production through reduced use of pesticides and higher profits. GM maize adoption results in less pesticide usage than on conventional counterpart crops leading to less residues in food and animal feed and allowing increasing diversity of bees and other pollinators. In the EU, well-tried coexistence measures for growing GM crops in the proximity of conventional crops have avoided gene flow issues. Scientific evidence so far seems to indicate that there has been no environmental damage from growing GM crops. They may possibly even be beneficial to the environment as they result in less pesticides and herbicides being applied and improved carbon sequestration from less tillage. A review of work on GM cereals relevant for the UK found input trait work on: herbicide and pathogen tolerance; abiotic stress such as from drought or salinity; and yield traits under different field conditions. For output traits, work has mainly focussed on modifying the nutritional components of cereals and in connection with various enzymes, diagnostics and vaccines. Scrutiny of applications submitted for field trial testing of GM cereals found around 9000 applications in the USA, 15 in Australia and 10 in the EU since 1996. There have also been many patent applications and granted patents for GM cereals in the USA for both input and output traits;an indication of the scale of such work is the fact that in a 6 week period in the spring of 2013, 12 patents were granted relating to GM cereals. A dynamic financial model has enabled us to better understand and examine the likely performance of Bt maize and HT OSR for the south of the UK, if cultivation is permitted in the future. It was found that for continuous growing of Bt maize and HT OSR, unless there was pest pressure for the former and weed pressure for the latter, the seed premia and likely coexistence costs for a buffer zone between other crops would reduce the financial returns for the GM crops compared with their conventional counterparts. When modelling HT OSR in a four crop rotation, it was found that gross margins increased significantly at the higher levels of such pest or weed pressure, particularly for farm businesses with larger fields where coexistence costs would be scaled down. The impact of the supply of UK-produced GM crops on the wider supply chain was examined through an extensive literature review and widespread stakeholder consultation with the feed supply chain. The animal feed sector would benefit from cheaper supplies of raw materials if GM crops were grown and, in the future, they might also benefit from crops with enhanced nutritional profile (such as having higher protein levels) becoming available. This would also be beneficial to livestock producers enabling lower production costs and higher margins. Whilst coexistence measures would result in increased costs, it is unlikely that these would cause substantial changes in the feed chain structure. Retailers were not concerned about a future increase in the amount of animal feed coming from GM crops. To conclude, we (the project team) feel that the adoption of currently available and appropriate GM crops in the UK in the years ahead would benefit farmers, consumers and the feed chain without causing environmental damage. Furthermore, unless British farmers are allowed to grow GM crops in the future, the competitiveness of farming in the UK is likely to decline relative to that globally.
Resumo:
Paternal biocontainment methods (PBMs) act by preventing pollen-mediated transgene flow. They are compromised by transgene escape via the crop-maternal line. We therefore assess the efficacy of PBMs for transgenic rapeseed (Brassica napus) biocontainment across the United Kingdom by estimating crop-maternal hybridization with its two progenitor species. We used remote sensing, field surveys, agricultural statistics, and meta-analysis to determine the extent of sympatry between the crop and populations of riparian and weedy B. rapa and B. oleracea. We then estimated the incidence of crop-maternal hybridization across all settings to predict the efficacy of PBMs. Evidence of crop chloroplast capture by the progenitors was expanded to a national scale, revealing that crop-maternal gene flow occurs at widely variable rates and is dependent on both the recipient and setting. We use these data to explore the value that this kind of biocontainment can bring to genetic modification (GM) risk management in terms of reducing the impact that hybrids have on the environment rather than preventing or reducing hybrid abundance per se.
Resumo:
How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative “Paleoamerican” relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
Resumo:
We characterised a set of nine polymorphic microsatellite loci for Pleistodontes imperialis sp. 1, the pollinator wasp of Port Jackson fig (Ficus rubiginosa) in south-eastern Australia. Characterisation was performed on 30 female individuals collected from a population in Sydney, Australia. The average number of alleles per locus was 7.33, and eight loci were not in Hardy–Weinberg equilibrium. This was expected as fig wasps are known to be highly inbred. A test of genetic differentiation between two natural populations of P. imperialis sp. 1 (Sydney and Newcastle, Australia – some 120 km apart) yielded a very low FST value of 0.012, suggesting considerable gene flow. Bayesian clustering analysis using TESS 2.3.1, which does not assume Hardy–Weinberg equilibrium, however, indicated potential spatial substructuring between the Sydney and Newcastle populations, as well as within the Sydney population. The described loci were also characterised for two other species in the P. imperialis complex: P. imperialis sp. 2 (Townsville, Australia) and P. imperialis sp. 4 (Brisbane, Australia). Seven and six of the nine loci were polymorphic for P. imperialis sp. 2 and P.imperialis sp. 4, respectively.
Resumo:
The phylogeography of South American lineages is a topic of heated debate. Although a single process is unlikely to describe entire ecosystems, related species, which incur similar habitat limitations, can inform the history for a subsection of assemblages. We compared the phylogeographic patterns of the cytochrome oxidase I marker from Anopheles triannulatus (N = 72) and previous results for A. darlingi (N = 126) in a broad portion of their South American distributions. Both species share similar population subdivisions, with aggregations northeast of the Amazon River, in southern coastal Brazil and 2 regions in central Brazil. The average (ST) between these groups was 0.39 for A. triannulatus. Populations northeast of the Amazon and in southeastern Brazil are generally reciprocally monophyletic to the remaining groups. Based on these initial analyses, we constructed the a priori hypothesis that the Amazon and regions of high declivity pose geographic barriers to dispersal in these taxa. Mantel tests confirmed that these areas block gene flow for more than 1000 km for both species. The efficacy of these impediments was tested using landscape genetics, which could not reject our a priori hypothesis but did reject simpler scenarios. Results form summary statistics and phylogenetics suggest that both lineages originated in central Amazonia (south of the Amazon River) during the late Pleistocene (579 000 years ago) and that they followed the same paths of expansion into their contemporary distributions. These results may have implications for other species sharing similar ecological limitations but probably are not applicable as a general paradigm of Neotropical biogeography.
Resumo:
Extensive population structuring is known to occur in Anopheles darlingi, the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation-dispersal-drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 854-866.
Resumo:
Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.
Resumo:
Tropical rainforests are becoming increasingly fragmented and understanding the genetic consequences of fragmentation is crucial for conservation of their flora and fauna. We examined populations of the toad Rhinella ornata, a species endemic to Atlantic Coastal Forest in Brazil, and compared genetic diversity among small and medium forest fragments that were either isolated or connected to large forest areas by corridors. Genetic differentiation, as measured by F(ST), was not related to geographic distance among study sites and the size of the fragments did not significantly alter patterns of genetic connectivity. However, population genetic diversity was positively related to fragment size, thus haplotype diversity was lowest in the smallest fragments, likely due to decreases in population sizes. Spatial analyses of genetic discontinuities among groups of populations showed a higher proportion of barriers to gene flow among small and medium fragments than between populations in continuous forest. Our results underscore that even species with relatively high dispersal capacities may, over time, suffer the negative genetic effects of fragmentation, possibly leading to reduced fitness of population and cases of localized extinction. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Social organization is an important component of the population biology of a species that influences gene flow, the spatial pattern and scale of movements, and the effects of predation or exploitation by humans. An important element of social structure in mammals is group fidelity, which can be quantified through association indices. To describe the social organization of marine tucuxi dolphins (Sotalia guianensis) found in the Cananeia estuary, southeastern Brazil, association indices were applied to photo-identification data to characterize the temporal stability of relationships among members of this population. Eighty-seven days of fieldwork were conducted from May 2000 to July 2003, resulting in direct observations of 374 distinct groups. A total of 138 dolphins were identified on 1-38 distinct field days. Lone dolphins were rarely seen, whereas groups were composed of up to 60 individuals (mean +/- 1 SD = 12.4 +/- 11.4 individuals per group). A total of 29,327 photographs were analyzed, of which 6,312 (21.5%) were considered useful for identifying individuals. Half-weight and simple ratio indices were used to investigate associations among S. guianensis as revealed by the entire data set, data from the core study site, and data from groups composed of <= 10 individuals. Monte Carlo methods indicated that only 3 (9.3%) of 32 association matrices differed significantly from expectations based on random association. Thus, our study suggests that stable associations are not characteristic of S. guianensis in the Cananeia estuary.
Resumo:
The hypothesis of gene flow between species with large differences in chromosome numbers has rarely been tested in the wild, mainly because species of different ploidy are commonly assumed to be reproductively isolated from each other because of instantaneous and strong postzygotic barriers. In this study, a broad-scale survey of molecular variation was carried out between two orchid species with different ploidy levels: Epidendrum fulgens (2n = 2x = 24 chromosomes) and Epidendrum puniceoluteum (2n = 4x = 52 chromosomes). To test the strength of their reproductive barriers, we investigated the distribution of genetic variation in sympatric and allopatric populations of these two species and conducted crossing experiments. Nuclear and plastid microsatellite loci were used to genotype 463 individuals from eight populations across the geographical range of both species along the Brazilian coastal plain. All six sympatric populations analysed presented hybrid zones, indicating that hybridization between E. fulgens and E. puniceoluteum is a common phenomenon. Bayesian assignment analysis detected the presence of F(1) and F(2) individuals and also signs of introgression, demonstrating a high potential for interspecific gene flow. Introgression occurs preferentially from E. fulgens to E. puniceoluteum. Pure parental individuals of both species display strong genotype-habitat associations, indicating that environment-dependent selection could be acting in all hybrid zones. This study suggests that hybridization and introgression are evolutionary processes playing a role in the diversification of Epidendrum and indicates the importance of investigations of hybrid zones in understanding reproductive barriers and speciation processes in Neotropical orchid species.
Resumo:
We see today many efforts to quantify biodiversity in different biomes. It is very important then to develop and to apply other methodologies that allow us to assess biodiversity. Here we present an example of application of three tools with this goal. We analyzed two populations of Plebeia remota from two distinct biomes that already showed several differences in morphology and behavior. Based on these differences, it has been suggested that the populations of Cunha and Prudentopolis do not represent a single species. In order to verify the existence or absence of gene flow between these two groups, we characterized the patterns of mtDNA through RFLP, the patterns of wing venation through geometric morphometry, and the cuticular hydrocarbons through gas chromatography-mass spectrometry. We used bees collected in these two locations and also from colonies which have being kept for around 9 years at Sao Paulo University. We found six different haplotypes in these specimens, of which three of them occurred exclusively in the population of Cunha and three only in the Prudentopolis population. The fact that the populations do not share haplotypes suggests no maternal gene flow between them. The two populations were differentiated by the pattern of the wing veins. They also had different mixtures of cuticle hydrocarbons. Furthermore it was shown that the colonies kept at the university did not hybridize. These two groups may constitute different species. We also show here the importance of using other methodologies than traditional taxonomy to assess and understand biodiversity, especially in bees.
Resumo:
Cytogenetic data have provided important clues that the Astyanax fasciatus populations from the Upper Parana River basin could be a part of a more diverse fish group, usually included on the same taxa. Samples collected in Cachoeira de Emas, SP, in Mogi-Guacu River basin, show two major cytotypes presenting 2n = 46 and 2n = 48 chromosomes, with distinct karyotypic formula, despite the fact that the molecular data suggested some degree of gene flow between these cytotypes. Cytogenetic and morphometric analyses were performed in this species, aiming to contribute to the understanding of the natural history from such fish group. Two allopatric populations with distinct standard cytotypes were analysed, and the data obtained suggest the separation into two groups. (c) 2008 The Authors Journal compilation (c) 2008 The Fisheries Society of the British Isles.
Resumo:
The Hyacinth Macaw (Anodorhynchus hyacinthinus) is one of 14 endangered species in the family Psittacidae occurring in Brazil, with an estimated total population of 6,500 specimens. We used nuclear molecular markers (single locus minisatellites and microsatellites) and 472 bp of the mitochondrial DNA control region to characterize levels of genetic variability in this species and to assess the degree of gene flow among three nesting sites in Brazil (Pantanal do Abobral, Pantanal de Miranda and Piaui). The origin of five apprehended specimens was also investigated. The results suggest that, in comparison to other species of parrots, Hyacinth Macaws possess relatively lower genetic variation and that individuals from two different localities within the Pantanal (Abobral and Miranda) belong to a unique interbreeding population and are genetically distinct at nuclear level from birds from the state of Piaui. The analyses of the five apprehended birds suggest that the Pantanal is not the source of birds for illegal trade, but their precise origin could not be assigned. The low genetic variability detected in the Hyacinth Macaw does not seem to pose a threat to the survival of this species. Nevertheless, habitat destruction and nest poaching are the most important factors negatively affecting their populations in the wild. The observed genetic structure emphasizes the need of protection of Hyacinth Macaws from different regions in order to maintain the genetic diversity of this species.