973 resultados para Arabian Plate
Resumo:
解决平行平板流槽每次实验只能观测壁面培养细胞受一种剪应力作用的问题。作者在平行平板流槽的基础上,首次提出了一种改进后的流槽--二维平板分叉流槽。通过数值模拟,给出了流体作定常流动时,流速和壁面剪应力的分布。结果发现,利用这种二维平板分叉流槽可以研究壁面培养的细胞在不同大小剪应力作用下的力学行为。该研究结果为流槽的合理设计和使用,并分析剪应力空间分布对内皮细胞的影响有重要实际意义。
Resumo:
By the semi-inverse method proposed by He, a Lagrangian is established for the large deflection problem of thin circular plate. Ritz method is used to obtain an approximate analytical solution of the problem. First order approximate solution is obtained, which is similar to those in open literature. By Mathematica a more accurate solution can be deduced.
Resumo:
This paper reports on the design and electrical characterization of a single crystal silicon micromechanical square-plate resonator. The microresonator has been excited in the anti-symmetrical wine glass mode at a resonant frequency of 5.166 MHz and exhibits an impressive quality factor (Q) of 3.7 × 106 at a pressure of 33 mtorr. The device has been fabricated in a commercial foundry process. An associated motional resistance of approximately 50 kΩ using a dc bias voltage of 60 V is measured for a transduction gap of 2 νm due to the ultra-high Q of the resonator. This result corresponds to a frequency-Q product of 1.9 × 1013, the highest reported for a fundamental mode single-crystal silicon resonator and on par with some of the best quartz crystal resonators. The results are indicative of the superior performance of silicon as a mechanical material, and show that the wine glass resonant mode is beneficial for achieving high quality factors allowed by the material limit. © 2009 IOP Publishing Ltd.
Resumo:
The problem of an infinite plate with crack of length 2a loaded by the remote tensile stress P and a pair of concentrated forces Q is discussed. The value of the force Q for the initial contact of crack face is investigated and the contact length elevated, while the Q force increases. The problem is solved assuming that the stress intensity factor vanishes at the end point of the contact portion. By the Fredholm integral equation for the multiple cracks, the reduction of stress intensity factor due to Q is found. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The mechanical behavior of dual phase steel plates is affected by internal stresses created during martensite transformation. Analytical modelling of this effect is made by considering a unit cell made of martensite inclusion in a ferrite matrix. A large strain finite element analysis is then performed to obtain the plane stress deformation state. Displayed numerically are the development of the plastic zone and distribution of local state of stress and strain. Studied also are the shape configuration of the martensite (hard-phase) that influences the interfacial condition as related to stress transmission and damage. Internal stresses are found to enhance the global flow stress after yield initiation in the ferrite matrix. Good agreement is obtained between the analytical results and experimental observations.
Resumo:
It is proved that the simplified Navier-Stokes (SNS) equations presented by Gao Zhi[1], Davis and Golowachof-Kuzbmin-Popof (GKP)[3] are respectively regular and singular near a separation point for a two-dimensional laminar flow over a flat plate. The order of the algebraic singularity of Davis and GKP equation[2,3] near the separation point is indicated. A comparison among the classical boundary layer (CBL) equations, Davis and GKP equations, Gao Zhi equations and the complete Navier-Stokes (NS) equations near the separation point is given.
Resumo:
The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions : the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a seriesexpansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.