993 resultados para Antifungal agents susceptibility


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trichosporon spp. are yeasts capable of causing invasive disease, which mainly affect immunocompromised patients. A clinical strain of T. asahii was isolated from the blood cultures of patients admitted to the General Hospital of Fortaleza. Susceptibility tests were conducted by disk diffusion and broth microdilution. The isolated strain of T. asahii was resistant to fluconazole. The patient used amphotericin B and caspofungin in order to facilitate the microbiological cure. It was the first isolation and identification of T. asahii in blood culture in Ceará, Brazil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: Antifungal susceptibility testing assists in finding the appropriate treatment for fungal infections, which are increasingly common. However, such testing is not very widespread. There are several existing methods, and the correlation between such methods was evaluated in this study. METHODS: The susceptibility to fluconazole of 35 strains of Candida sp. isolated from blood cultures was evaluated by the following methods: microdilution, Etest, and disk diffusion. RESULTS: The correlation between the methods was around 90%. CONCLUSIONS: The disk diffusion test exhibited a good correlation and can be used in laboratory routines to detect strains of Candida sp. that are resistant to fluconazole.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AbstractINTRODUCTION:Candida parapsilosis is a common yeast species found in cases of onychomycosis and candidemia associated with infected intravascular devices. In this study, we differentiated Candida parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis from a culture collection containing blood and subungual scraping samples. Furthermore, we assessed the in vitro antifungal susceptibility of these species to fluconazole, itraconazole, voriconazole, posaconazole, amphotericin B, and caspofungin.METHODS:Differentiation of C. parapsilosis complex species was performed by amplification of the secondary alcohol dehydrogenase (SADH) gene and digestion by the restriction enzyme Ban I. All isolates were evaluated for the determination of minimal inhibitory concentrations using Etest, a method for antifungal susceptibility testing.RESULTS:Among the 87 isolates, 78 (89.7%) were identified as C. parapsilosis sensu stricto , five (5.7%) were identified as C. orthopsilosis , and four (4.6%) were identified as C. metapsilosis . Analysis of antifungal susceptibility showed that C. parapsilosis sensu strictoisolates were less susceptible to amphotericin B and itraconazole. One C. parapsilosis sensu stricto isolate was resistant to amphotericin B and itraconazole. Moreover, 10.2% of C. parapsilosis sensu stricto isolates were resistant to caspofungin. Two C. parapsilosis sensu strictoisolates and one C. metapsilosis isolate were susceptible to fluconazole in a dose-dependent manner.CONCLUSIONS:We reported the first molecular identification of C. parapsilosiscomplex species in State of Goiás, Brazil. Additionally, we showed that although the three species exhibited differences in antifungal susceptibility profiles, the primary susceptibility of this species was to caspofungin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method is described which permits to determine in vivo an in a short period of time (4-6 hours) the sensitivity of T. cruzo strains to known active chemotherapeutic agents. By using resistant- and sensitive T. cruzi stains a fairly good correlation was observed between the results obtained with this rapid method (which detects activity against the circulating blood forms) and those obtained with long-term schedules which involve drug adminstration for at least 20 consecutive days and a prolonged period of assessment. This method may be used to characterize susceptibility to active drugs used clinically, provide infomation on the specific action against circulating trypomastigotes and screen active compounds. Differences in the natural susceptibility of Trypanosoma cruzi strains to active drugs have been already reported using different criteria, mostly demanding long-term study of the animal (Hauschka, 1949; Bock, Gonnert & Haberkorn, 1969; Brener, Costa & Chiari, 1976; Andrade & Figueira, 1977; Schlemper, 1982). In this paper we report a method which detects in 4-6 hours the effect of drugs on bloodstream forms in mice with established T. cruzi infections. The results obtained with this method show a fairly good correlation with those obtained by prolonged treatment schedules used to assess the action of drugs in experimental Chagas' disease and may be used to study the sensitivity of T. cruzi strains to active drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

From March 1999 to March 2000, we conducted a prospective multicenter study of candidemia involving five tertiary care hospitals from four countries in Latin America. Yeast isolates were identified by classical methods and the antifungal susceptibility profile was determined according to the National Committee for Clinical Laboratory Standards microbroth assay method. During a 12 month-period we were able to collect a total of 103 bloodstream isolates of Candida spp. C. albicans was the most frequently isolated species accounting for 42% of all isolates. Non-albicans Candida species strains accounted for 58% of all episodes of candidemia and were mostly represented by C. tropicalis (24.2%) and C. parapsilosis (21.3%). It is noteworthy that we were able to identify two cases of C. lusitaniae from different institutions. In our casuistic, non-albicans Candida species isolates related to candidemic episodes were susceptible to fluconazole. Continuously surveillance programs are needed in order to identify possible changes in the species distribution and antifungal susceptibility patterns of yeasts that may occurs after increasing the use of azoles in Latin American hospitals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Aspergillus species are the main pathogens causing invasive fungal infections but the prevalence of other mould species is rising. Resistance to antifungals among these new emerging pathogens presents a challenge for managing of infections. Conventional susceptibility testing of non-Aspergillus species is laborious and often difficult to interpret. We evaluated a new method for real-time susceptibility testing of moulds based on their of growth-related heat production.Methods: Laboratory and clinical strains of Mucor spp. (n = 4), Scedoporium spp. (n = 4) and Fusarium spp. (n = 5) were used. Conventional MIC was determined by microbroth dilution. Isothermal microcalorimetry was performed at 37 C using Sabouraud dextrose broth (SDB) inoculated with 104 spores/ml (determined by microscopical enumeration). SDB without antifungals was used for evaluation of growth characteristics. Detection time was defined as heat flow exceeding 10 lW. For susceptibility testing serial dilutions of amphotericin B, voriconazole, posaconazole and caspofungin were used. The minimal heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration, inhbiting 50% of the heat produced by the growth control at 48 h or at 24 h for Mucor spp. Susceptibility tests were performed in duplicate.Results: Tested mould genera had distinctive heat flow profiles with a median detection time (range) of 3.4 h (1.9-4.1 h) for Mucor spp, 11.0 h (7.1-13.7 h) for Fusarium spp and 29.3 h (27.4-33.0 h) for Scedosporium spp. Graph shows heat flow (in duplicate) of one representative strain from each genus (dashed line marks detection limit). Species belonging to the same genus showed similar heat production profiles. Table shows MHIC and MIC ranges for tested moulds and antifungals.Conclusions: Microcalorimetry allowed rapid detection of growth of slow-growing species, such as Fusarium spp. and Scedosporium spp. Moreover, microcalorimetry offers a new approach for antifungal susceptibility testing of moulds, correlating with conventional MIC values. Interpretation of calorimetric susceptibility data is easy and real-time data on the effect of different antifungals on the growth of the moulds is additionally obtained. This method may be used for investigation of different mechanisms of action of antifungals, new substances and drug-drug combinations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cryptococcal infection had an increased incidence in last years due to the explosion of acquired immune deficiency syndrome epidemic and by using new and effective immunosuppressive agents. The currently antifungal therapies used such as amphotericin B, fluconazole, and itraconazole have certain limitations due to side effects and emergence of resistant strains. So, a permanent search to find new drugs for cryptococcosis treatment is essential. Ocimum gratissimum, plant known as alfavaca (Labiatae family), has been reported earlier with in vitro activity against some bacteria and dermatophytes. In our work, we study the in vitro activity of the ethanolic crude extract, ethyl acetate, hexane, and chloroformic fractions, essential oil, and eugenol of O. gratissimum using an agar dilution susceptibility method towards 25 isolates of Cryptococcus neoformans. All the extracts of O. gratissimum studied showed activity in vitro towards C. neoformans. Based on the minimal inhibitory concentration values the most significant results were obtained with chloroformic fraction and eugenol. It was observed that chloroformic fraction inhibited 23 isolates (92%) of C. neoformans at a concentration of 62.5 µg/ml and eugenol inhibited 4 isolates (16%) at a concentration of 0.9 µg/ml. This screening may be the basis for the study of O. gratissimum as a possible antifungal agent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We conducted a cross-sectional, hospital-based study between January 2006-March 2008 to estimate the resistance of Mycobacterium tuberculosis to first-line drugs in patients with tuberculosis at a Brazilian hospital. We evaluated the performance of the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) microplate assay compared with the Bactec-MGIT 960™ system for mycobacteria testing. The prevalence of resistance in M. tuberculosis was 6.7%. Multidrug-resistance [resistance to rifampicin (RMP) and isoniazid (INH)], INH-resistance and streptomycin (SM)-resistance accounted for 1%, 3.8% and 3.8% of all resistance, respectively, and all isolates were susceptible to ethambutol (EM). The resistance was primary in four cases and acquired in three cases and previous treatment was associated with resistance (p = 0.0129). Among the 119 M. tuberculosis isolates, complete concordance of the results for INH and EM was observed between the MTT microplate and Bactec-MGIT 960TM methods. The observed agreement for RMP was 99% (sensitivity: 90%) and 95.8% for SM (sensitivity 90.9%), lower than those for other drugs. The MTT colourimetric method is an accurate, simple and low-cost alternative in settings with limited resources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the antifungal susceptibility profile and the production of potential virulence attributes in a clinical strain of Candida nivariensis for the first time in Brazil, as identified by sequencing the internal transcribed spacer (ITS)1-5.8S-ITS2 region and D1/D2 domains of the 28S of the rDNA. For comparative purposes, tests were also performed with reference strains. All strains presented low planktonic minimal inhibitory concentrations (PMICs) to amphotericin B (AMB), caspofungin (CAS), and voriconazole. However, our strain showed elevated planktonic MICs to posaconazole (POS) and itraconazole, in addition to fluconazole resistance. Adherence to inert surfaces was conducted onto glass and polystyrene. The biofilm formation and antifungal susceptibility on biofilm-growing cells were evaluated by crystal violet staining and a XTT reduction assay. All fungal strains were able to bind both tested surfaces and form biofilm, with a binding preference to polystyrene (p < 0.001). AMB promoted significant reductions (≈50%) in biofilm production by our C. nivariensis strain using both methodologies. This reduction was also observed for CAS and POS, but only in the XTT assay. All strains were excellent protease producers and moderate phytase producers, but lipases were not detected. This study reinforces the pathogenic potential of C. nivariensis and its possible resistance profile to the azolic drugs generally used for candidiasis management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: To assess the in vitro susceptibility of Actinobaculum schaalii to 12 antimicrobial agents as well as to dissect the genetic basis of fluoroquinolone resistance. METHODS: Forty-eight human clinical isolates of A. schaalii collected in Switzerland and France were studied. Each isolate was identified by 16S rRNA sequencing. MICs of amoxicillin, ceftriaxone, gentamicin, vancomycin, clindamycin, linezolid, ciprofloxacin, levofloxacin, moxifloxacin, co-trimoxazole, nitrofurantoin and metronidazole were determined using the Etest method. Interpretation of results was made according to EUCAST clinical breakpoints. The quinolone-resistance-determining regions (QRDRs) of gyrA and parC genes were also identified and sequence analysis was performed for all 48 strains. RESULTS: All isolates were susceptible to amoxicillin, ceftriaxone, gentamicin, clindamycin (except three), vancomycin, linezolid and nitrofurantoin, whereas 100% and 85% were resistant to ciprofloxacin/metronidazole and co-trimoxazole, respectively. Greater than or equal to 90% of isolates were susceptible to the other tested fluoroquinolones, and only one strain was highly resistant to levofloxacin (MIC ?32 mg/L) and moxifloxacin (MIC 8 mg/L). All isolates that were susceptible or low-level resistant to levofloxacin/moxifloxacin (n?=?47) showed identical GyrA and ParC amino acid QRDR sequences. In contrast, the isolate exhibiting high-level resistance to levofloxacin and moxifloxacin possessed a unique mutation in GyrA, Ala83Val (Escherichia coli numbering), whereas no mutation was present in ParC. CONCLUSIONS: When an infection caused by A. schaalii is suspected, there is a risk of clinical failure by treating with ciprofloxacin or co-trimoxazole, and ?-lactams should be preferred. In addition, acquired resistance to fluoroquinolones more active against Gram-positive bacteria is possible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We evaluated isothermal microcalorimetry for real-time susceptibility testing of non-Aspergillus molds. MIC and minimal effective concentration (MEC) values of Mucorales (n = 4), Fusarium spp. (n = 4), and Scedosporium spp. (n = 4) were determined by microbroth dilution according to the Clinical Laboratory Standard Institute M38-A2 guidelines. Heat production of molds was measured at 37 °C in Sabouraud dextrose broth inoculated with 2.5 × 10(4) spores/mL in the presence of amphotericin B, voriconazole, posaconazole, caspofungin, and anidulafungin. As determined by microcalorimetry, amphotericin B was the most active agent against Mucorales (MHIC 0.06-0.125 μg/mL) and Fusarium spp. (MHIC 1-4 μg/mL), whereas voriconazole was the most active agent against Scedosporium spp. (MHIC 0.25 to 8 μg/mL). The percentage of agreement (within one 2-fold dilution) between the MHIC and MIC (or MEC) was 67%, 92%, 75%, and 83% for amphotericin B, voriconazole, posaconazole, and caspofungin, respectively. Microcalorimetry provides additional information on timing of antifungal activity, enabling further investigation of drug-mold and drug-drug interaction, and optimization of antifungal treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anti-strip agents can effect the temperature susceptibility of asphalt cement. This concern was expressed at the 33rd Annual Bituminous Conference in St. Paul, Minnesota by Mr. David Gendell, Director of Highway Operations. This study compares viscosity-temperature relationships of asphalt cement with and without anti-strip agent addition.