482 resultados para Analytes
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect back- ground correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier, With 5 mug Pd + 3 mug Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400degreesC and 2100degreesC, respectively, and 20 muL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 - 50.0 mug L-1 for As, Sb, Se; 10.0 - 100 mug L-1 for Cu; and 20.0 - 200 mug L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 mug L-1 As, 0.2 mug L-1 Cu, 0.6 mug L-1 Mn, 0.3 mug L-1 Sb, 0.9 mug L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 mug L-1, 1000 mug L-1, 2000 mug L-1, 5 mug L-1, and 50 mug L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mu Sb and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.
Resumo:
A method has been developed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by graphite furnace atomic absorption spectrometry (GFAAS) using a transversely heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages using the mixture Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3, and diluted ethanol (1 + 1, v/v) containing different nitric acid concentrations. With 5 rhog Pd + 3 mug Mg as the modifiers, pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1200 C and 2200degreesC respectively. For 20 muL of diluted sample (10 muL ethanol + 10 muL of 0.28 mol L-1 HNO3) dispensed into the graphite tube, analytical curves in the 2.0 - 50 mug L-1 Al, As, Cu, Fe, Mn, Ni ranges were established. The calculated characteristic masses were - 37 pg Al, 73 pg As, 31 pg Cu, 16 pg Fe, 9 pg Mn, and 44 pg Ni, and the lifetime of the tube was around 2 50 firings. The limits of detection (LOD) based on integrated absorbance were 1.2 mug L-1 Al, 2.5 mug L-1 As. 0.22 mug L-1 Cu, 1.6 L-1 Fe 0.20 mug L-1 Mn 1.1 mug L-1 Ni. The relatively standard deviations (n = 12) were less than or equal to 3%, less than or equal to 6%, less than or equal to 2%, less than or equal to 3.4%, less than or equal to 1.3%, and less than or equal to 2% for Al, As, Cu, Fe, Mn, and Ni, respectively, the recoveries of Al, As, Cu, Fe, Mn and Ni added to fuel ethanol samples varied from 77% to 112%, 92% to 114%, 104% to 113%, 73% to 116%, 91% to 122% and 93% to 116%, respectively. Accuracy was checked for Al, As, Cu, Fe, Mn, and Ni determination in 20 samples purchased at local gas stations in Araraquara city, Brazil. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained by single-element GFAAS.
Resumo:
Nanostructured films of lignin (macromolecule extracted from sugar cane bagasse), polypyrrole (conducting polymer) and bis butylimido perylene (organic dye) were used in the detection of trace levels of fluorine (from H2SiF6), chlorine (from NaCIO), Pb+2, Cu+2, and Cd+2 in aqueous solutions. Langmuir monolayers on ultrapure water were characterised by surface pressure-mean molecular area (II-A) isotherms. Langmuir-Blodgett (LB) films were transferred onto gold interdigitated electrodes and used as individual sensing units of an electronic tongue system. Impedance spectroscopy measurements were taken with the sensor immersed into aqueous solutions containing the ions described above in different molar concentrations. Fourier transform infrared absorption (FTIR) was employed to identify possible interactions between the LB films and the analytes in solution, and no significant changes could be observed in the FTIR spectra of BuPTCD and Ppy. Therefore, the results for lignin point to an interaction involving the electronic cloud of the phenyl groups with the metallic ions.
Resumo:
A method was developed to determine simazine, atrazine and their metabolite, 2-chloro-4,6-diamino-1,3,5-triazine, in urine. The presence of these herbicides in urine may reflect possible exposure to pesticides. Sample preparation involved protein precipitation and solid-phase extraction. The samples were analyzed by high-performance liquid chromatography-mass spectrometry. The detection limits were 0.4 mug/l and the analytes have a linear response in the interval 6-800 mug/l. The precision of the method was reflected in the RSD of <2.4% for the herbicides studied. Based on the detectable herbicide levels from spiked urine samples collected from unexposed volunteers, this method can be used to determine the low levels necessary for establishing reference values of the selected herbicides and the metabolite. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l(-1) HNO3 and in 1 + 1 v/v diluted wine using mixtures of Pd(NO3)(2) + Mg(NO3)(2) and NH4H2PO4 + Mg(NO3)(2) as chemical modifiers. With 5 mug Pd + 3 mug Mg as the modifiers and a two-step pyrolysis (10 s at 400 degreesC and 10 s at 600 degreesC), the formation of carbonaceous residues inside the atomizer was avoided. For 20 mul of sample (wine + 0.056 mol l(-1) HNO3, 1 + 1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 mug l(-1) Cd and 5.0-50 mug l(-1) Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 mug l(-1) for Cd, 0.8 mug l(-1) for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 mug l(-1) and for Pb at 500 mug l(-1). The relative standard deviations (n = 12) were typically < 8% for Cd and < 6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Ph was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Multivariate quality control studies applied to Ca(II) and Mg(II) determination by a portable method
Resumo:
A portable or field test method for simultaneous spectrophotometric determination of calcium and magnesium in water using multivariate partial least squares (PLS) calibration methods is proposed. The method is based on the reaction between the analytes and methylthymol blue at pH 11. The spectral information was used as the X-block, and the Ca(II) and Mg(II) concentrations obtained by a reference technique (ICP-AES) were used as the Y-block. Two series of analyses were performed, with a month's difference between them. The first series was used as the calibration set and the second one as the validation set. Multivariate statistical process control (MSPC) techniques, based on statistics from principal component models, were used to study the features and evolution with time of the spectral signals. Signal standardization was used to correct the deviations between series. Method validation was performed by comparing the predictions of the PLS model with the reference Ca(II) and Mg(II) concentrations determined by ICP-AES using the joint interval test for the slope and intercept of the regression line with errors in both axes. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
The use of Saccharomyces cerevisiae as a substrate to selectively retain Sn(II) and Sn(IV) has been investigated. Several factors affecting the retention of the analytes by yeast, such as pH, amount of biomass, temperature and time of contact were evaluated. Based on this study, a method for determination of Sn(II) and Sn(IV) combining inductively coupled plasma optical emission spectrometry (ICP OES) and solid phase extraction using Saccharomyces cerevisiae is proposed. The procedure consists of the selective retention of Sn(IV) by yeast at pH = 2.0 while Sn(II) remains in solution. Determination of tin in the solid phase was easily carried out by submitting a slurry of the yeast (0.5 g/40 mL) directly to ICP OES. The precision of the extraction procedure was characterized by an RSD lower than 4%. The detection limits of tin (3 sigma) in the solid phase and the liquid phase were 1.1 and 0.7 mu g L-1, respectively. The proposed approach was evaluated for determination of Sn(II) and Sn(IV) in spiked river water and real samples of industrial waste water (untreated and treated). For all samples, recoveries of spiked Sn(II) and Sn(IV) were between 85 and 112%.
Resumo:
The use of Saccharomyces cerevisiae as a sorbent material to separate Cd(II) and Cd-metallothionein complex (Cd-MT) has been explored. Solid-liquid phase extractions were carried out in batch mode and the main parameters of the process (pH, temperature, time of incubation, amount of biomass and analyte) were evaluated. Under optimized conditions, the yeast quantitatively retain (94 +/- 5%) the Cd(II) while 97 +/- 2% of the Cd-MT remain in the supernatant. on base of the findings of this study, a simple method is proposed to determine Cd(II) and Cd-MT in cytosols extracted from mouse kidney and crab hepatopancreas. Inductively coupled plasma optical emission spectrometry was used to quantify the analytes in solid and liquid phase. Determination of Cd in the solid phase was carried out by introducing a slurry of the yeast (0.0625 g/10 mL) directly to the inductively coupled plasma optical emission spectrometer. Mixed standards solutions, which also have been submitted to the extraction procedure, were used to quantify the analytes in the samples. Thus, matrix effects due to nebulization of the slurry were overcame. Limits of detection (3 sigma) for Cd(II) and Cd-MT were 1.5 and 1.2 mu g L-1, respectively. Relative standard deviations of signals were 4.2% for measurements in the slurry of solid phase and 2.1% for measurements in the liquid phase. Recoveries of the analytes in cytosol samples were between 76 and 114%. The concentrations of Cd(II) (2.4 +/- 0.5 mu g L-1) and Cd-MT (3.0 +/- 0.5 mu g L-1) found by using the proposed approach were close to those found by tangential-flow ultrafiltration technique (2.6 +/- 0.7 mu g L-1 for Cd(II) and 3.7 +/- 1.7 mu g L-1 for Cd-MT).
Resumo:
Diffusive gradients in thin films (DGT) and tangential-flow ultrafiltration (TF-UF) were combined for fractionation of Al and Cu in river water containing high content of dissolved organic carbon. A procedure based on ultrafiltration data is proposed to determine diffusion coefficients of the analytes in water samples and model solutions containing both free metal (M) and complex (metal - humic substance). Aiming to evaluate the accuracy of the proposed approach, the DGT results were compared with those from a protocol for determination of labile Al and Cu based on solid phase extraction (SPE). Good agreement between data from DGT and SPE were attained for model solutions. For analysis of real organic-rich water samples, differences between DGT and SPE measurements were consistent with the time-scales of the techniques. The concentration of labile Al determined by DGT were lower than the total dissolved concentrations (determined by inductively coupled plasma mass spectrometry) and exceeded the ultrafiltered concentration, indicating that inorganic Al species (species small enough to pass through 1 kDa membrane) were minor species as compared with Al organic complexes. For both Al and Cu, there were species not measured by DGT as they are not sufficiently labile. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A comparative study is reported between C-18 bonded silica gel and powdered polyethylene (PE) as sorbent for Cd, Cu, and Pb determination using ammonium diethyldithiophosphate (ADTP) as the complexing agent in a flow injection system. The complexes were formed in 0.14 mol L-1 HNO3 and processed in a simple flow system comprising a peristaltic pump, a manual injector-commutator, and a sorbent-packed minicolumn. Ethanol was selected as the eluent and analytes in the eluate were determined by flame atomic absorption spectrometry. The optimum concentration of the complexing agent was 0.1% (m/v) ADTP for Cu and Pb determination using either C-18 or PE, and 0.25% (m/v) ADTP for Cd determination using PE. The sample loading flow rates were 5.0, 3.6, and 3.0 mL min(-1) for Cu, Pb, and Cd, respectively. The best elution flow rate was 6.5 mL min(-1). For a 60-sec preconcentration time, the sampling rate was 40 h(-1) and the enrichment factors of 33, 36, and 11 times (C-18) or 18, 22, and 23 times (PE) were obtained for Cu, Pb, and Cd, respectively. The limits of detection (LOD) were 1.6 mug L-1 Cu, 11 mug L-1 Pb, and 2.0 mug L-1 Cd using C-18 or 2.9 mug L-1 Cu, 19 mug L-1 Pb, and 1.0 mug L-1 Cd using PE, respectively. The relative standard deviations (n = 12) were typically <2%, <2%, and <6% for Cd, Cu, and Pb, respectively. The recoveries of Cd, Cu, and Pb added to wine samples varied from 96-99%, 97-102%, and 90-99%, respectively, using C-18 or PE. Accuracy was checked for Cd, Cu, and Pb determination in six wine samples digested by block digestor and open-vessel microwave-assisted digestion systems. The results revealed that C-18 was more efficient for Cu and Pb determination, while PE was the best sorbent for Cd.
Resumo:
A new method was developed for the simultaneous determination of As, Bi, Sb, and Se by flow injection hydride generation graphite furnace atomic absorption spectrometry. An alternative two-step sample treatment procedure was used. The sample was heated (80degreesC) for 10 min in 6 M HCl to reduce Se(VI) to Se(IV), followed by the addition of 1% (m/v) thiourea solution to reduce arsenic and antimony from the pentavalent to the trivalent states.With this procedure, all analytes were converted to their most favorable and sensitive oxidation states to generate the corresponding hydrides. The pre-treated sample solution was then processed in the flow system for in situ trapping and atomization in a graphite tube coated with iridium. The impermanent modifier remained stable up to 300 firings and new coating out significant were possible wit changes in the analytical performance.The accuracy was checked for As, Bi, Sb, and Se determination in water standard reference materials NIST 1640 and 1643d and the results were in agreement with the certified values at a 95% confidence level. Good recoveries (94-104%.) of spiked mineral waters and synthetic As(V), Sb(Ill), mixtures of As(Ill), Sb(V), Se(VI), and Se(IV) were also found. Calculated characteristic masses were 32 mug As, 79 mug Bi, 35 mug Sb, and 130 pg Se, and the corresponding limits of detection were 0.06, 0.16, 0.19, and 0.59 mug L-1, respectively. The repeatability for a typical solution containing 5 mug L-1 As, Bi, Sb, and Se was in the 1-3% range.
Resumo:
An automated on-line solid phase extraction procedure followed by liquid chromatography with diode array detection was investigated for the determination of different classes of pesticides in water samples containing varied amount of humic substances. The different pesticides used were: carbendazin, carbofuran, atrazine, diuron, propanil, molinate, alachlor, parathion-ethyl, diazinon, trifluralin and the degradation products deisopropylatrazine and deethylatrazine. Humic substances extracted from a Brazilian sediment were used from 5 to 80 mg/l and their influence on recoveries was evaluated in neutral and acidic media. Recoveries higher than 70% were obtained for all the pesticides, from the preconcentration of 75 mi of aqueous sample fortified at 2 ng/ml using precolumns packed with PLRP-S. Good recoveries were obtained at neutral pH for most of the analytes up to 40 mg/l of humic acid. Only at 80 mg/l the recoveries were significantly affected, both at acidic and neutral pH. The method was applied to the determination of pesticides in river water spiked at 0.1 to 1 ng/ml. Detection limits obtained for water containing 10 mg/l of humic acid were between 0.05 and 0.3 ng/ml.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)