994 resultados para Analysis, Aerosols, Atmosphere, Amines


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Carbon dioxide capture and storage (CCS) is one option for mitigating atmospheric emissions of carbon dioxide and thereby contributes in actions for stabilization of atmospheric greenhouse gas concentrations. The Bellona Foundation is striving to achieve wide implementation of carbon dioxide (CO2) capture and storage both in Norway and internationally. Bellona considers CCS as the only viable large scale option to close the gap between energy production and demand in an environmentally sound way, thereby ensuring that climate changes and acidification of the oceans due to increased CO2 concentrations in the atmosphere will be stabilised. ff

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of barometric altimetry is to some extent a limiting factor on safety, predictability and efficiency of aircraft operations, and reduces the potential of the trajectory based operations capabilities. However, geometric altimetry could be used to improve all of these aspects. Nowadays aircraft altitude is estimated by applying the International Standard Atmosphere which differs from real altitude. At different temperatures for an assigned barometric altitude, aerodynamic forces are different and this has a direct relationship with time, fuel consumption and range of the flight. The study explores the feasibility of using sensors providing geometric reference altitude, in particular, to supply capabilities for the optimization of vertical profiles and also, their impact on the vertical Air Traffic Management separation assurance processes. One of the aims of the thesis is to assess if geometric altitude fulfils the aeronautical requirements through existing sensors. Also the thesis will elaborate on the advantages of geometric altitude over the barometric altitude in terms of efficiency for vertical navigation. The evidence that geometric altitude is the best choice to improve the efficiency in vertical profile and aircraft capacity by reducing vertical uncertainties will also be shown. In this paper, an atmospheric study is presented, as well as the impact of temperature deviation from International Standard Atmosphere model is analyzed in order to obtain relationship between geometric and barometric altitude. Furthermore, an aircraft model to study aircraft vertical profile is provided to analyse trajectories based on geometric altitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work aims to assess Laser-Induced Plasma Spectrometry (LIPS) as a tool for the characterization of photovoltaic materials. Despite being a well-established technique with applications to many scientific and industrial fields, so far LIPS is little known to the photovoltaic scientific community. The technique allows the rapid characterization of layered samples without sample preparation, in open atmosphere and in real time. In this paper, we assess LIPS ability for the determination of elements that are difficult to analyze by other broadly used techniques, or for producing analytical information from very low-concentration elements. The results of the LIPS characterization of two different samples are presented: 1) a 90 nm, Al-doped ZnO layer deposited on a Si substrate by RF sputtering and 2) a Te-doped GaInP layer grown on GaAs by Metalorganic Vapor Phase Epitaxy. For both cases, the depth profile of the constituent and dopant elements is reported along with details of the experimental setup and the optimization of key parameters. It is remarkable that the longest time of analysis was ∼10 s, what, in conjunction with the other characteristics mentioned, makes of LIPS an appealing technique for rapid screening or quality control whether at the lab or at the production line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of a conductive bare tape electrically floating in low Earth orbit as an effective electron beam source to produce artificial auroral effects, free of problems that mard tandard beams, is considered. Ambient ions impacting the tape with keV energies over most of its length liberate secondary electrons that race down the magnetic field, excite neutrals in the E layer, and result in auroral emissions. The tether would operate with both a power supply and a plasma contactor off at nighttime; power and contactor would be on at daytime for reboost. Tomographic analysis of auroral emissions from the footprint of the beam, as observed from the spacecraft, can provide density profiles of dominant neutral species in the E layer. A characteristic tether system, at altitude 300 km and moderate orbital inclination, would involve an aluminum tape with a length of 20 km, a width of 15 mm, and a thickness of 0.2 mm for a full-system mass around 1200 kg, with two thirds going into the power subsystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this contribution, results of a theoretical study on different reactions that odine oxides, in the presence of water, can undergo to form iodine oxides particles in the atmosphere. Thermodynamic and kinetic properties of these reactions have been obtained at high level ab initio correlated calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few years, the common practice within air traffic management has been that commercial aircraft fly by following a set of predefined routes to reach their destination. Currently, aircraft operators are requesting more flexibility to fly according to their prefer- ences, in order to achieve their business objectives. Due to this reason, much research effort is being invested in developing different techniques which evaluate aircraft optimal trajectory and traffic synchronisation. Also, the inefficient use of the airspace using barometric altitude overall in the landing and takeoff phases or in Continuous Descent Approach (CDA) trajectories where currently it is necessary introduce the necessary reference setting (QNH or QFE). To solve this problem and to permit a better airspace management born the interest of this research. Where the main goals will be to evaluate the impact, weakness and strength of the use of geometrical altitude instead of the use of barometric altitude. Moreover, this dissertation propose the design a simplified trajectory simulator which is able to predict aircraft trajectories. The model is based on a three degrees of freedom aircraft point mass model that can adapt aircraft performance data from Base of Aircraft Data, and meteorological information. A feature of this trajectory simulator is to support the improvement of the strategic and pre-tactical trajectory planning in the future Air Traffic Management. To this end, the error of the tool (aircraft Trajectory Simulator) is measured by comparing its performance variables with actual flown trajectories obtained from Flight Data Recorder information. The trajectory simulator is validated by analysing the performance of different type of aircraft and considering different routes. A fuel consumption estimation error was identified and a correction is proposed for each type of aircraft model. In the future Air Traffic Management (ATM) system, the trajectory becomes the fundamental element of a new set of operating procedures collectively referred to as Trajectory-Based Operations (TBO). Thus, governmental institutions, academia, and industry have shown a renewed interest for the application of trajectory optimisation techniques in com- mercial aviation. The trajectory optimisation problem can be solved using optimal control methods. In this research we present and discuss the existing methods for solving optimal control problems focusing on direct collocation, which has received recent attention by the scientific community. In particular, two families of collocation methods are analysed, i.e., Hermite-Legendre-Gauss-Lobatto collocation and the pseudospectral collocation. They are first compared based on a benchmark case study: the minimum fuel trajectory problem with fixed arrival time. For the sake of scalability to more realistic problems, the different meth- ods are also tested based on a real Airbus 319 El Cairo-Madrid flight. Results show that pseudospectral collocation, which has shown to be numerically more accurate and computa- tionally much faster, is suitable for the type of problems arising in trajectory optimisation with application to ATM. Fast and accurate optimal trajectory can contribute properly to achieve the new challenges of the future ATM. As atmosphere uncertainties are one of the most important issues in the trajectory plan- ning, the final objective of this dissertation is to have a magnitude order of how different is the fuel consumption under different atmosphere condition. Is important to note that in the strategic phase planning the optimal trajectories are determined by meteorological predictions which differ from the moment of the flight. The optimal trajectories have shown savings of at least 500 [kg] in the majority of the atmosphere condition (different pressure, and temperature at Mean Sea Level, and different lapse rate temperature) with respect to the conventional procedure simulated at the same atmosphere condition.This results show that the implementation of optimal profiles are beneficial under the current Air traffic Management (ATM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se ha estudiado el acero inoxidable pulvimetalúrgico AISI 430L, comparando la sinterización en dos atmósferas diferentes; en vacío, y en una atmósfera que contiene nitrógeno. Se ha desarrollado un tratamiento térmico con objeto de incrementar las propiedades mecánicas, mediante la modificación microestructural de los nitruros complejos de hierro y cromo precipitados durante la etapa de sinterización. Se han evaluado las propiedades físicas y a la vez se ha realizado un análisis microestructural con el fin de relacionar la microestructura con el incremento en las propiedades mecánicas. Influence of sintering atmosphere on the mechanical properties of steel P / M AISI 430L. It has studied the stainless steel powder metallurgy AISI 430L. It has compared the sintering in two different atmospheres; in vacuum, and in an atmosphere containing nitrogen. It has developed a heat treatment with the aim of improving the mechanical properties. This has been done through microstructural modification of complex nitrides of iron and chromium precipitates during the phase of sintering. Physical properties have been evaluated and are been performing a microstructural analysis for microstructure related to the increase in mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal design of stratospheric balloon payloads usually focuses on the cruise phase of the missions, that is, the floating altitude conditions. The ascent phase usually takes between 2 and 4 h, a very small period compared to the duration of the whole mission, which can last up to 4 weeks. However, during this phase payloads are subjected to very harsh conditions due mainly to the convective cooling that occurs as the balloon passes through the cold atmosphere, with minimum temperatures in the tropopause. The aim of this work is to study the thermal behaviour of a payload carried by a long duration balloon during the ascent phase. Its temperature has been calculated as a function of the altitude from sea level to floating conditions. To perform this analysis it has been assumed that the thermal interactions (convection and radiation) depend on the altitude, on the environmental conditions (which in turn depend also on the altitude) and on the temperature of the system itself. The results have been compared with the measurements taken during the SUNRISE test flight, launched in October 2007 by CSBF from Fort Sumner (New Mexico).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cover crop selection should be oriented to the achievement of specific agrosystem benefits. The covercrop, catch crop, green manure and fodder uses were identified as possible targets for selection. Theobjective was to apply multi-criteria decision analysis to evaluate different species (Hordeum vulgareL., Secale cereale L., ×Triticosecale Whim, Sinapis alba L., Vicia sativa L.) and cultivars according to theirsuitability to be used as cover crops in each of the uses. A field trial with 20 cultivars of the five specieswas conducted in Central Spain during two seasons (October?April). Measurements of ground cover, cropbiomass, N uptake, N derived from the atmosphere, C/N, dietary fiber content and residue quality werecollected. Aggregation of these variables through utility functions allowed ranking species and cultivarsfor each usage. Grasses were the most suitable for the cover crop, catch crop and fodder uses, while thevetches were the best as green manures. The mustard attained high ranks as cover and catch crop the firstseason, but the second decayed due to low performance in cold winters. Mustard and vetches obtainedworse rankings than grasses as fodder. Hispanic was the most suitable barley cultivar as cover and catchcrop, and Albacete as fodder. The triticale Titania attained the highest rank as cover and catch crop andfodder. Vetches Aitana and BGE014897 showed good aptitudes as green manures and catch crops. Thisanalysis allowed comparison among species and cultivars and might provide relevant information forcover crops selection and management.