967 resultados para Ammonium perchlorate.
Resumo:
Modification of citrate and hydroxylamine reduced Ag colloids with thiocholine bromide, a thiol functionalized quaternary ammonium salt, creates particles where the zeta potential is switched from the normal values of ca. -50 mV to ca. + 50 mV. These colloids are stable but can be aggregated with metal salts in much the same way as the parent colloids. They are excellent SERS substrates for detection of anionic targets since their positive zeta potentials promote adsorption of negatively charged ions. This is important because the vast majority of published SERS studies involve cationic or neutral targets. Moreover, the fact that the modifier is a quaternary ammonium ion means that the negative surface charge is maintained even at alkaline pH. The modified colloids can be used to detect compounds which cannot be detected using conventional negatively-charged citrate or hydroxylamine reduced metal nanoparticles, for example the detection limit was 5.0 x 10(-5) M for perchlorate and
Resumo:
Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide, [S111][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN111][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, xs, in each solvent to the pure solvent. In this case, xs is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.15 to 353.15 K. The effect of temperature on the transport properties of each binary mixture was then investigated by fitting the experimental data using Arrhenius' law and the Vogel-Tamman-Fulcher (VTF) equation. The experimental data shows that the residual conductivity at low temperature, e.g., 263.15 K, of each binary mixture is exceptionally high. For example, conductivity values up to 35 and 42 mS·cm-1 were observed in the case of the [S 111][TFSI] + ACN and [HN111][TFSI] + ACN binary mixtures, respectively. Subsequently, a theoretical approach based on the conductivity and on the viscosity of electrolytes was formulated by treating the migration of ions as a dynamical process governed by ion-ion and solvent-ion interactions. Within this model, viscosity data sets were first analyzed using the Jones-Dole equation. Using this theoretical approach, excellent agreement was obtained between the experimental and calculated conductivities for the binary mixtures investigated at 298.15 K as a function of the composition up to the maximum solubility of the IL. Finally, the thermal characterization of the IL solutions, using DSC measurements, showed a number of features corresponding to different solid-solid phase transitions, TS-S, with extremely low melting entropies, indicating a strong organizational structure by easy rotation of methyl group. These ILs can be classified as plastic crystal materials and are promising as ambient-temperature solid electrolytes. © 2013 American Chemical Society.
Resumo:
Depletion of highly abundant proteins is an approved step in blood plasma analysis by mass spectrometry (MS). In this study, we explored a precipitation and differential protein solubility approach as a fractionation strategy for abundant protein removal from plasma. Total proteins from plasma were precipitated with 90% saturated ammonium sulfate, followed by differential solubilization in 55% and 35% saturated ammonium sulfate solutions. Using a four hour liquid chromatography (LC) gradient and an LTQ-Orbitrap XL mass spectrometer, a total of 167 and 224 proteins were identified from the 55% and 35% ammonium sulfate fractions, whereas 235 proteins were found in the remaining protein fractions with at least two unique peptides. SDS-PAGE and exclusive total spectrum counts from LC-MS/MS analyses clearly showed that majority of the abundant plasma proteins were solubilized in 55% and 35% ammonium sulfate solutions, indicating that the remaining protein fraction is of potential interest for identification of less abundant plasma proteins. Serum albumin, serotransferrin, alpha-1-antitrypsin and transthyretin were the abundant proteins that were highly enriched in 55% ammonium sulfate fractions. Immunoglobulins, complement system proteins, and apolipoproteins were among other abundant plasma proteins that were enriched in 35% ammonium sulfate fractions. In the remaining protein fractions a total of 40 unique proteins were identified of which, 32 proteins were identified with at least 10 exclusive spectrum counts. According to PeptideAtlas, 9 of these 32 proteins were estimated to be present at low μg ml(-1) (0.12-1.9 μg ml(-1)) concentrations in the plasma, and 17 at low ng ml(-1) (0.1-55 ng ml(-1)) range.
Resumo:
High resolution synchrotron radiation core level photoemission measurements have been used to undertake a comparative study ofthe high temperature thermal stability ofthe ammonium sulphide passivated InGaAs surface and the same surface following the atomic layer deposition (ALD) of an ultrathin (∼1 nm) Al2O3 layer. The solution based ex situ sulphur passivation was found to be effective at removing a significant amount of the native oxides and protecting the surface against re-oxidation upon air exposure. The residual interfacial oxides which form between sulphur passivated InGaAs and the ultrathin Al2O3 layer can be substantially removed at high temperature (up to 700 ◦C) without impacting on the InGaAs stoichiometry while significant loss of indium was recorded at this temperature on the uncovered sulphur passivated InGaAs surface.
Resumo:
Fluctuations in ammonium (NH4+), measured as NH4-N loads using an ion-selective electrode installed at the inlet of a sewage treatment plant, showed a distinctive pattern which was associated to weekly (i.e., commuters) and seasonal (i.e., holidays) fluctuations of the population. Moreover, population size estimates based on NH4-N loads were lower compared to census data. Diurnal profiles of benzoylecgonine (BE) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) were shown to be strongly correlated to NH4-N. Characteristic patterns, which reflect the prolonged nocturnal activity of people during the weekend, could be observed for BE, cocaine, and a major metabolite of MDMA (i.e., 4-hydroxy-3-methoxymethamphetamine). Additional 24 h composite samples were collected between February and September 2013. Per-capita loads (i.e., grams per day per 1000 inhabitants) were computed using census data and NH4-N measurements. Normalization with NH4-N did not modify the overall pattern, suggesting that the magnitude of fluctuations in the size of the population is negligible compared to those of illicit drug loads. Results show that fluctuations in the size of the population over longer periods of time or during major events can be monitored using NH4-N loads: either using raw NH4-N loads or population size estimates based on NH4-N loads, if information about site-specific NH4-N population equivalents is available.
Resumo:
The maximum amount of ethyl carbamate (EC), a known animal carcinogen produced by the reaction of urea and ethanol, allowed in alcoholic beverages is regulated by legislation in many countries. Wine yeast produce urea by the metabolism of arginine, the predominant assimilable amino acid in must. This action is due to arginase (encoded by CARl). Regulation of CARl, and other genes in this pathway, is often attributed to a well-documented phenomenon known as nitrogen catabolite repression. The effect of the timing of di-ammonium phosphate (DAP) additions on the nitrogen utilization, regulation of CARl, and EC production was investigated. A correlation was found between the timing of DAP addition and the utilization of nitrogen. When DAP was added earlier in the fermentations, less amino nitrogen and more ammonia nitrogen was sequestered from the media by the cells. It was also seen that early DAP addition led to more total nitrogen being used, with a maximal difference of ~25% between fermentations where no DAP was added versus addition at the start of the fermentation. The effect of the timing ofDAP addition on the expression of CARJ during fermentation was analyzed via northern transfer and the relative levels of CARl expression were determined. The trends in expression can be correlated to the nitrogen data and be used to partially explain differences in EC formation between the treatments. EC was quantified at the end of fermentation by GC/MS. In Montrachet yeast, a significant positive correlation was found between the timing of DAP addition, from early to late, and the final EC concentration m the wine (r = 0.9226). In one of the fermentations, EC levels of 30.5 ppb was foimd when DAP was added at the onset of fermentation. A twofold increase (69.5 ppb) was observed when DAP was added after 75% of the sugars were metabolized. When no DAP was added, the ethyl carbamate levels are comparable at a value of 38 ppb. In contrast, the timing of DAP additions do not affect the level EC produced by the yeast ECU 18 in this manner. The study of additional yeast strains shows that the effect of DAP addition to fermentations is strain dependent. Our results reveal the potential importance of the timing of DAP addition to grape must with respect to EC production, and the regulatory effect of DAP additions on the expression of genes in the pathway for arginine metabolism in certain wine yeast strains.
Resumo:
The work described in this thesis has been dtvided into six sections . The first section involves the reaction of 3,5-diphenyl-2-methyl-l,3,4-oxadiazolium perchlorate with acetic and benzoic anhydrides. The second section deals with the preparation and reactions of 1,3,4-thia diazolium salts. Some monomeric 1,3,4-thiadiazoline methine bases have also been prepared by reacting 1,3,4-thia d iaz ol ium s al t s with concen trated ammonium hydroxide solution. Variable temperature p.m.r. of 2-(3-acetylacetonylidene)-3,5-diphenyl-A4 -1,3,4-thiadiazoline has also been described. The third section deals with prepar a tion and reactions of some compounds in benzoxazole series. The fourth section deals with the prep a ration and reactions of N-alkyl-2-methylbenzothi azolium salts with base , a nd with some a cetylating and thioacetylating agents. Treatment of 2,3-dimethylbenzothiazolium iodide and of 3-ethyl-2-methylbenzothia zolium iodide with base wa s found to give the corresponding dimeric methine b a ses and evidence supporting their structure is also given. Thiol acetic acid was found to exchange 0 for S in its reactions with 2-acetonylidene-3-methylbenzothiazoline and 2-acetophenonylidene-3-methylbenzothi a zoline. (ii) In th e fifth section, the r eactions of 2,3-dimethylbenzselenazolium iodide with a variety of ac e tylating and thioacetylating agents has been described. The treatment of 2,3-dimethylbenzselenazolium iodide with base was found to give rise to a dimeric methine base and evidence supporting its structure is also given. The reactions of this dimeric methine b a se with benzoic anhydride and phenylisothiocyanate have also been described. The sixth section deals with the preparation and reactions of l-alkyl-2-methylquinolinium salts. Treatment of 1,2-dimethylquinolinium iodide and l-ethyl-2-methylquinolinium iodide was found to give the corresponding monomeric methine bases and evidence supporting their structure is also given. The E-type geometry of the olefinic bond in 2-acetonylidene-l-methylquinoline has been established on the basis of an N.O.E. experiment.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
A detailed ultrasonic study of the elastic properties of lithium ammonium sulfate ~LiNH4SO4! or LAS has been carried out below room temperature. The elastic constants of LAS at room temperature are reported. The discrepancy present in earlier elastic constant data associated with the different choice of axes for this orthorhombic system are clarified. The results of the temperature variation study down to 220 K confirm the ferroelastic phase transition at 285 K and establish a thermal hysteresis of about 2.5 K between the cooling and heating cycles. Results of the investigation on the suspected weak phase transition at 256 K suggest that this transition occurs at 242 K on cooling and at 256 K on heating, thus having a thermal hysteresis of about 14 K. However, since the observed elastic anomaly for this transition is very small, the nature of this transition still remains unclear
Resumo:
Results of axiswise measurements of the electrical conductivity (dc and ac) and dielectric constant of NH4H2PO4 confirm the occurrence of the recently suggested high‐temperature phase transition in this crystal (at 133 °C). The corresponding transition in ND4D2PO4 observed here for the first time takes place at 141.5 °C. The mechanism involved in these transitions and those associated with the electrical conduction and dielectric anomalies are explained on the basis of the motional effects of the ammonium ions in these crystals. Conductivity values for deuterated crystals give direct evidence for the predominance of protonic conduction throughout the entire range of temperatures studied (30–260 °C).
Resumo:
The thesis aims to present the results of the experimental investigations on the electrical properties like electrical conductivity, dielectric constant and ionic thermo~ currents in certain ammonium containing ferroelectric crystals viz. LiNH4SO4, (NH4)2SO4 and (NH4)5H(SO4)2. Special attention has been paid in revealing the mechanisms of electrical conduction in the various phases of these crystals and those asso~ ciated with the different phase transitions occurring in them, by making studies on doped, quenched and deuterated crystals. The report on the observation of two new phase transitions in (NH4) S O2 and of a similar one in ( NH4 ) H (2SO4 ) are included. The relaxation mechanisms of the impurity-vacancy complexes and the space charge phenomena in pure and doped crystals of LiNH4SO4 and (NH4)2SO4 and the observation of a new type of ionic thermo-current viz. Protonic Thermo-Current (PTC) in these crystals are also presented here.
Resumo:
In the present thesis a series of exhaustive investigations have been carried out on a number of crystalline samples with special reference tx> the jphase transitions exhibited by them. These include single crystals of pure, doped or deuterated specimens of certain ammonium containing crystals viz., (NH )34H(SO4)2, (NH4)2HPO4, (NH4)2Cr2O7 znui NH4H2PO4. ac/dc electrical conductivity, dielectric constant, ionic thermocurrent as wwifil as photoacoustic measurements have been carried out on most of them over a wide range of temperature. In addition investigations have been carried out in pure and doped single crystals of NaClO3 and NaNO3 using ionic thermocurrent measurements and these are presented here. Special attention has been paid to reveal the mechanism of electrical conduction in various phases of "these crystals and to evaluate the different parameters involved in the conduction as well as phase transition process. The thesis contains ten chapters ‘
Resumo:
Perchlorate-reducing bacteria fractionate chlorine stable isotopes giving a powerful approach to monitor the extent of microbial consumption of perchlorate in contaminated sites undergoing remediation or natural perchlorate containing sites. This study reports the full experimental data and methodology used to re-evaluate the chlorine isotope fractionation of perchlorate reduction in duplicate culture experiments of Azospira suillum strain PS at 37 degrees C (Delta Cl-37(Cr)--ClO4-) previously reported, without a supporting data set by Coleman et al. [Coleman, M.L., Ader, M., Chaudhuri, S., Coates,J.D., 2003. Microbial Isotopic Fractionation of Perchlorate Chlorine. Appl. Environ. Microbiol. 69, 4997-5000] in a reconnaissance study, with the goal of increasing the accuracy and precision of the isotopic fractionation determination. The method fully described here for the first time, allows the determination of a higher precision Delta Cl-37(Cl)--ClO4- value, either from accumulated chloride content and isotopic composition or from the residual perchlorate content and isotopic composition. The result sets agree perfectly, within error, giving average Delta Cl-37(Cl)--ClO4- = -14.94 +/- 0.15%omicron. Complementary use of chloride and perchlorate data allowed the identification and rejection of poor quality data by applying mass and isotopic balance checks. This precise Delta Cl-37(Cl)--ClO4-, value can serve as a reference point for comparison with future in situ or microcosm studies but we also note its similarity to the theoretical equilibrium isotopic fractionation between a hypothetical chlorine species of redox state +6 and perchlorate at 37 degrees C and suggest that the first electron transfer during perchlorate reduction may occur at isotopic equilibrium between art enzyme-bound chlorine and perchlorate. (C) 2008 Elsevier B.V. All rights reserved.