969 resultados para Amazonian deforestation
Resumo:
This study aims at exploring the potential impact of forest protection intervention on rural households’ private fuel tree planting in Chiro district of eastern Ethiopia. The study results revealed a robust and significant positive impact of the intervention on farmers’ decisions to produce private household energy by growing fuel trees on their farm. As participation in private fuel tree planting is not random, the study confronts a methodological issue in investigating the causal effect of forest protection intervention on rural farm households’ private fuel tree planting through non-parametric propensity score matching (PSM) method. The protection intervention on average has increased fuel tree planting by 503 (580.6%) compared to open access areas and indirectly contributed to slowing down the loss of biodiversity in the area. Land cover/use is a dynamic phenomenon that changes with time and space due to anthropogenic pressure and development. Forest cover and land use changes in Chiro District, Ethiopia over a period of 40 years was studied using remotely sensed data. Multi temporal satellite data of Landsat was used to map and monitor forest cover and land use changes occurred during three point of time of 1972,1986 and 2012. A pixel base supervised image classification was used to map land use land cover classes for maps of both time set. The result of change detection analysis revealed that the area has shown a remarkable land cover/land use changes in general and forest cover change in particular. Specifically, the dense forest cover land declined from 235 ha in 1972 to 51 ha in 1986. However, government interventions in forest protection in 1989 have slowed down the drastic change of dense forest cover loss around the protected area through reclaiming 1,300 hectares of deforested land through reforestation program up to 2012.
Resumo:
The garimpo gold mining activity has released about 2.500 tons of mercury in the Brazilian Amazonian environment in the 1980-1995 period. The northern region of Mato Grosso State, an important gold mining and trading area during the Arnazonian gold rush is now at a turning point regarding its economic future. Nowadays, the activities related to gold mining have only a low relevance on its economy. Thus, the local communities are looking for economic alternatives for the development of the region. Cooperative fish farming is one of such alternatives. However, some projects are directly implemented on areas degraded by the former garimpo activity and the mercury left behind still poses risks, especially by its potential accumulation in fish. The objective of the present study was to evaluate the levels of mercury contamination in two fish farming areas, Paranaita and Alta Floresta, with and without records of past gold-washing activity, respectively. Data such as mercury concentration in fish of different trophic level, size, and weight as well as the water physical and chemical parameters were measured and considered. These preliminary data have shown no significant difference between these two fish fanning areas, relatively to mercury levels in fish. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Although Mauritia flexuosa (Arecaceae) plays a pivotal role in the ecology and economy of the Amazon, and occurs in a variety of habitats, little is known about the influence of habitat on the reproductive biology of this palm. My dissertation focuses on the reproductive biology of M. flexuosa in three habitats in Roraima, Brazil: undisturbed forest, undisturbed forest-savanna ecotone, and savanna disturbed by plantations of the exotic tree, Acacia mangium. First, I calculated sex ratios and linked precipitation patterns with phenology. Sex ratios were female-biased. Precipitation was negatively associated with flowering, and positively associated with fruiting. Habitat appears to have no significant influence on phenology of M. flexuosa, although short-term climate variation may affect phenology of this species. Second, I examined floral biology, observed floral visitors, and performed exclusion experiments to determine the pollination system of M. flexuosa. Fruit set did not differ significantly between the visitor exclusion treatment and the control, but was significantly lowest in the wind + visitor exclusion treatment, suggesting that this dioecious palm is anemophilous, independent of habitat. Third, I identified the abiotic and biotic factors explaining variation in fruit mass, seed mass, seed number per fruit, and total fruit yield among habitats. Soil moisture and flooding during the wet season were the best predictors of fruit and seed output. The number of leaves, diameter at breast height, and height were all accurate predictors of reproductive output, but crown volume did not accurately predict fruit yields. Results re-evaluate traditional assumptions about wind-pollination in the tropics, and highlight abiotic and biotic factors responsible for variation in reproductive output of M. flexuosa, with implications for effective management of this palm. Finally, I interviewed harvesters and vendors to document the traditional knowledge and market dynamics of the fruit of M. flexuosa, buriti. Traditional knowledge corroborated results from scientific studies. Vendors argued that the price of buriti must increase, and must fluctuate with varying supply. With appropriate economic incentives to vendors/harvesters, Roraima may expand its market infrastructure for buriti, effectively stimulating the regional economy and practicing sustainable harvesting.
Resumo:
The influence of particles recycling on the geochemistry of sediments in a large tropical dam lake in the Amazonian region, Brazil. Article in Journal of South American Earth Sciences 72 · December 2016 DOI: 10.1016/j.jsames.2016.09.012 1st Rita Fonseca 16.85 · Universidade de Évora 2nd Catarina Pinho 3rd Manuela Oliveira 22.6 · Universidade de Évora Abstract As a result of over-erosion of soils, the fine particles, which contain the majority of nutrients, are easily washed away from soils, which become deficient in a host of components, accumulating in lakes. On one hand, the accumulation of nutrients-rich sediments are a problem, as they affect the quality of the overlying water and decrease the water storage capacity of the system; on the other hand, sediments may constitute an important resource, as they are often extremely rich in organic and inorganic nutrients in readily available forms. In the framework of an extensive work on the use of rock related materials to enhance the fertility of impoverish soils, this study aimed to evaluate the role on the nutrients cycle, of particles recycling processes from the watershed to the bottom of a large dam reservoir, at a wet tropical region under high weathering conditions. The study focus on the mineralogical transformations that clay particles undergo from the soils of the drainage basin to their final deposition within the reservoir and their influence in terms of the geochemical characteristics of sediments. We studied the bottom sediments that accumulate in two distinct seasonal periods in Tucuruí reservoir, located in the Amazonian Basin, Brazil, and soils from its drainage basin. The surface layers of sediments in twenty sampling points with variable depths, are representative of the different morphological sections of the reservoir. Nineteen soil samples, representing the main soil classes, were collected near the margins of the reservoir. Sediments and soils were subjected to the same array of physical, mineralogical and geochemical analyses: (1) texture, (2) characterization and semi-quantification of the clay fraction mineralogy and (3) geochemical analysis of the total concentration of major elements, organic compounds (organic C and nitrogen), soluble fractions of nutrients (P and K), exchangeable fractions (cation exchange capacity, exchangeable bases and acidity) and pH(H2O).
Resumo:
An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40 m), measured at 39.4 and 81.6 m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0° < |Z| < 20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0° < |Z| < 20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.
Resumo:
2008
Resumo:
Este estudo teve como objetivo estabelecer as variações na atividade fitotóxica dos extratos hexânico, acetato de etila e metanólico das raízes de Moutabea guianensis, e das substâncias cafeato de metila e escopoletina isoladas do extrato acetato de etila, variando a concentração e as espécies receptores. Foram desenvolvidos bioensaios de atividades fitotóxicas de germinação (a 25 °C e 12 horas de fotoperíodo) e de desenvolvimento da radícula e do hipocótilo (25 °C e 24 horas de fotoperíodo). A germinação das sementes de Mimosa pudica foi sensível aos extratos hexânico, acetato de etila e metanólico a 1% (w/v), com efeitos de inibição em 92%, 100% e 100%, respectivamente. A análise comparativa da atividade fitotóxica das substâncias testadas revelou que a escopoletina apresentou um potencial de inibição mais elevado no bioensaio de germinação de sementes frente a Mimosa pudica. Senna obtusifolia não foi sensível às substâncias testadas. Cafeato de metila apresentou maior potencial de inibição no bioensaio de desenvolvimento da radícula e hipocótilo, e a intensidade dos efeitos alelopáticos variou com as concentrações.
Resumo:
An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40?m), measured at 39.4 and 81.6?m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0°???|Z|???20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0°???|Z|???20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.
Resumo:
The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.
Resumo:
Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.
Resumo:
The overarching objective of the research was to identify the existence and nature of international legal principles governing sustainable forest use and management. This research intended to uncover a set of forest legal considerations that are relevant for consideration across the globe. The purpose behind this, is to create a theoretical base of international forest law literature which be drawn upon to inform future international forestry research. This research will be of relevance to those undertaking examination of a particular forest issue or those focusing on forests in a particular region. The thesis explains the underlying legal issues in forest regulation, the dominant international regulatory approaches and makes suggestions as to how international and national forest policy could be improved.