992 resultados para Alpine grassland
Resumo:
European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil–plant–animal–atmosphere system, and these are most effective in mixed swards with a legume proportion of 30–50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland–livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future.
Resumo:
Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.
Resumo:
Polyommatus bellargus is a priority species of butterfly in the UK as a result of its scarcity and the rate of population decline over the last few years. In the UK, the species is associated with chalk grassland on hot, south-facing slopes suitable for the growth of the food plant Hippocrepis comosa. Shooting game birds is a popular pastime in the UK. Over 40 million game birds, principally Phasianus colchicus and Alectoris rufa, are bred and released into the countryside each year for shooting interests. There is a concern that the release of such a large number of non-native birds has an adverse effect on native wildlife. A study was carried out over a period of 3 years out to examine whether there was any evidence that A. rufa released into chalk grassland habitat negatively affects populations of P. bellargus. A comparison was made between sites where large numbers of A. rufa were released versus sites where no, or few, birds were released. The study involved the construction of exclosures in these sites to allow an examination of the number of butterflies emerging from H. comosa when the birds were excluded versus when the birds had free range across the area. Where birds were present the on-site vegetation was shorter than where they were absent indicating that the birds were definitely influencing habitat structure. However, the evidence that A. rufa was negatively influencing the number of adult butterflies emerging was not strong, although there was a largely non-significant tendency for higher butterfly emergence when the birds were excluded or absent.
Resumo:
1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.
Resumo:
This paper deals with the complex issue of reversing long-term improvements of fertility in soils derived from heathlands and acidic grasslands using sulfur-based amendments. The experiment was conducted on a former heathland and acid grassland in the U.K. that was heavily fertilized and limed with rock phosphate, chalk, and marl. The experimental work had three aims. First, to determine whether sulfurous soil amendments are able to lower pH to a level suitable for heathland and acidic grassland re-creation (approximately 3 pH units). Second, to determine what effect the soil amendments have on the available pool of some basic cations and some potentially toxic acidic cations that may affect the plant community. Third, to determine whether the addition of Fe to the soil system would sequester PO4− ions that might be liberated from rock phosphate by the experimental treatments. The application of S0 and Fe(II)SO4− to the soil was able to reduce pH. However, only the highest S0 treatment (2,000 kg/ha S) lowered pH sufficiently for heathland restoration purposes but effectively so. Where pH was lowered, basic cations were lost from the exchangeable pool and replaced by acidic cations. Where Fe was added to the soil, there was no evidence of PO4− sequestration from soil test data (Olsen P), but sequestration was apparent because of lower foliar P in the grass sward. The ability of the forb Rumex acetosella to apparently detoxify Al3+, prevalent in acidified soils, appeared to give it a competitive advantage over other less tolerant species. We would anticipate further changes in plant community structure through time, driven by Al3+ toxicity, leading to the competitive exclusion of less tolerant species. This, we suggest, is a key abiotic driver in the restoration of biotic (acidic plant) communities.
Resumo:
The importance of managing land to optimise carbon sequestration for climate change mitigation is widely recognised, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grasslands soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in sub-surface soil below 30cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30cm. Total stocks of soil carbon (t ha-1) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha-1 in surface soils (0-30 cm), and 13.7 t ha-1 in soils from 30-100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.
Resumo:
The timing and nature of the penultimate deglaciation, also known as Termination II (T-II), is subject of controversial discussions due to the scarcity of precisely-dated palaeoclimate records. Here we present a new precisely-dated and highly-resolved multi-proxy stalagmite record covering T-II from the high alpine Schafsloch Cave in Switzerland, an area where climate is governed by the North Atlantic. The inception of stalagmite growth at 137.4 ± 1.4 kyr before present (BP) indicates the presence of drip water and cave air temperatures of above 0°C, and is related to a climate-induced change in the thermal state (from cold- to warm-based) of the glacier above the cave. The cessation of stalagmite growth between 133.1 ± 0.7 and 131.9 ± 0.6 kyr BP is most likely related to distinct drop in temperature associated with Heinrich stadial 11. The resumption of stalagmite growth at 131.9 ± 0.6 kyr BP is accompanied by an abrupt increase in temperature and precipitation as indicated by distinct shifts in the oxygen and carbon isotopic composition as well as in trace element concentrations. The mid-point of T-II is around 131.8 ± 0.6 kyr BP in the Schafsloch Cave record is significantly earlier compared to the age of 129.1 ± 0.1 kyr BP in the Sanbao Cave record from China. The different ages between both records can be best explained by the competing effects of insolation and glacial boundary forcing on seasonality and snow cover extent in Eurasia.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2009/1018/thumbnail.jpg
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Eight non-lactating Alpine goats, averaging 57kg, were paired according to weight and assigned randomly to 2 groups of 4 animals, control (CG) and treatment (TG) with feed and water ad libitum. An adjustment period of 7 days with all animals at thermoneutral conditions was followed by a 28-day period when TG was exposed to air temperatures averaging 35.0 degrees C, from 0800 to 1700h, including simulated solar radiation, and thermoneutral conditions from 2700 to 0800h. CG remained under thermoneutral conditions. Respiratory frequency was greater, tidal volume lower, and respiratory minute volume greater for TG than CG (176 vs 30 breaths/min, P<.001, 105 vs 293ml, P<.01; 18.4 vs 9.21, P<.05). Respiratory evaporation and sweating rate as well as rectal and skin temperatures were greater for TG than CG (14.59 vs 6.32 kcal h(-1), P<.01; 43.97 vs.00 g m(-2) h(-1), P<.001; 40.0 vs 38.9 degrees C, P<.001; 39.3 vs 35.8 degrees C, P<.01). There was no difference between groups for hematocrit and feed intake, but water consumption was greater for stressed goats than control ones (28.3 vs 29.7%; 1.44 vs 1.49 kg/day; 3.07 vs 1.26 I/day, P<.05), Final body weights of both groups were similar to initial ones. It was concluded that non-lactating goats tolerated well a 35 degrees C day temperature which is 5 degrees C above the upper critical temperature, with a black-globe temperature of 39.1 degrees C and a Botsball temperature of 28.3 degrees C, though a certain degree of hyperthermia may occur, as long as thermoneutral conditions have prevailed during the night.
Resumo:
Nitrous oxide (N2O) is involved in both ozone destruction and global warming. In agricultural soils it is produced by nitrification and denitrification mainly after fertilization. Nitrification inhibitors have been proposed as one of the management tools for the reduction of the potential hazards of fertilizer-derived N2O. Addition of nitrification inhibitors to fertilizers maintains soil N in ammonium form, thereby gaseous N losses by nitrification and denitrification are less likely to occur and there is increased N utilization by the sward. We present a study aimed to evaluate the effectiveness of the nitrification inhibitor dicyandiamide (DCD) and of the slurry additive Actilith F2 on N2O emissions following application of calcium ammonium nitrate or cattle slurry to a mixed clover/ryegrass sward in the Basque Country. The results indicate that large differences in N2O emission occur depending on fertilizer type and the presence or absence of a nitrification inhibitor. There is considerable scope for immediate reduction of emissions by applying DCD with calcium ammonium nitrate or cattle slurry. DCD, applied at 25 kg ha-1, reduced the amount of N lost as N2O by 60% and 42% when applied with cattle slurry and calcium ammonium nitrate, respectively. Actilith F2 did not reduce N2O emissions and it produced a long lasting mineralization of previously immobilized added N.
Resumo:
A mark-recapture study of a snake assemblage using pitfall traps with drift fences was carried out in a disturbed grassland environment (e.g. cattle breeding and cultivations), located in the Pampa Biome, in the central region of the Rio Grande do Sul State, southern Brazil. From February 2001 to January 2004 we caught 272 snakes belonging to 20 species from the following families: Elapidae (5%), Viperidae (10%), and Colubridae (85%). The assemblage had a unimodal seasonal pattern of activity, and the highest number of captures occurred between September and May. There was a positive and significant correlation between the number of captures and monthly minimum and maximum average temperatures. Recruitment was observed from January to April. During the study, the area was affected by human activities, which altered the community structure: Pseudablabes agassizii was negatively affected by habitat devastation while Liophis poecilogyrus took advantage of this. Our results reinforced the impression that Pseudablabes agassizii is a habitat specialist species. We extend the understanding of the susceptibility of this species to environmental destruction in open natural environments of South America, and propose its use as a potential bio-indicator of the Pampa biome. We also discuss the importance of conservation strategies for snakes in grasslands of southern Brazil. © Finnish Zoological and Botanical Publishing Board 2007.