1000 resultados para Algoritmo Científico. Computação Evolucionária. Metaheurísticas. Problema do Caixeiro Alugador
Resumo:
In the world we are constantly performing everyday actions. Two of these actions are frequent and of great importance: classify (sort by classes) and take decision. When we encounter problems with a relatively high degree of complexity, we tend to seek other opinions, usually from people who have some knowledge or even to the extent possible, are experts in the problem domain in question in order to help us in the decision-making process. Both the classification process as the process of decision making, we are guided by consideration of the characteristics involved in the specific problem. The characterization of a set of objects is part of the decision making process in general. In Machine Learning this classification happens through a learning algorithm and the characterization is applied to databases. The classification algorithms can be employed individually or by machine committees. The choice of the best methods to be used in the construction of a committee is a very arduous task. In this work, it will be investigated meta-learning techniques in selecting the best configuration parameters of homogeneous committees for applications in various classification problems. These parameters are: the base classifier, the architecture and the size of this architecture. We investigated nine types of inductors candidates for based classifier, two methods of generation of architecture and nine medium-sized groups for architecture. Dimensionality reduction techniques have been applied to metabases looking for improvement. Five classifiers methods are investigated as meta-learners in the process of choosing the best parameters of a homogeneous committee.
Uma análise experimental de algoritmos exatos aplicados ao problema da árvore geradora multiobjetivo
Resumo:
The Multiobjective Spanning Tree Problem is NP-hard and models applications in several areas. This research presents an experimental analysis of different strategies used in the literature to develop exact algorithms to solve the problem. Initially, the algorithms are classified according to the approaches used to solve the problem. Features of two or more approaches can be found in some of those algorithms. The approaches investigated here are: the two-stage method, branch-and-bound, k-best and the preference-based approach. The main contribution of this research lies in the fact that no research was presented to date reporting a systematic experimental analysis of exact algorithms for the Multiobjective Spanning Tree Problem. Therefore, this work can be a basis for other research that deal with the same problem. The computational experiments compare the performance of algorithms regarding processing time, efficiency based on the number of objectives and number of solutions found in a controlled time interval. The analysis of the algorithms was performed for known instances of the problem, as well as instances obtained from a generator commonly used in the literature
Resumo:
The segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album
Resumo:
With the advance of the Cloud Computing paradigm, a single service offered by a cloud platform may not be enough to meet all the application requirements. To fulfill such requirements, it may be necessary, instead of a single service, a composition of services that aggregates services provided by different cloud platforms. In order to generate aggregated value for the user, this composition of services provided by several Cloud Computing platforms requires a solution in terms of platforms integration, which encompasses the manipulation of a wide number of noninteroperable APIs and protocols from different platform vendors. In this scenario, this work presents Cloud Integrator, a middleware platform for composing services provided by different Cloud Computing platforms. Besides providing an environment that facilitates the development and execution of applications that use such services, Cloud Integrator works as a mediator by providing mechanisms for building applications through composition and selection of semantic Web services that take into account metadata about the services, such as QoS (Quality of Service), prices, etc. Moreover, the proposed middleware platform provides an adaptation mechanism that can be triggered in case of failure or quality degradation of one or more services used by the running application in order to ensure its quality and availability. In this work, through a case study that consists of an application that use services provided by different cloud platforms, Cloud Integrator is evaluated in terms of the efficiency of the performed service composition, selection and adaptation processes, as well as the potential of using this middleware in heterogeneous computational clouds scenarios
Resumo:
This work presents a algorithmic study of Multicast Packing Problem considering a multiobjective approach. The first step realized was an extensive review about the problem. This review serverd as a reference point for the definition of the multiobjective mathematical model. Then, the instances used in the experimentation process were defined, this instances were created based on the main caracteristics from literature. Since both mathematical model and the instances were definined, then several algoritms were created. The algorithms were based on the classical approaches to multiobjective optimization: NSGA2 (3 versions), SPEA2 (3 versions). In addition, the GRASP procedures were adapted to work with multiples objectives, two vesions were created. These algorithms were composed by three recombination operators(C1, C2 e C3), two operator for build solution, a mutation operator and a local search procedure. Finally, a long experimentation process was performed. This process has three stages: the first consisted of adjusting the parameters; the second was perfomed to indentify the best version for each algorithm. After, the best versions for each algorithm were compared in order to identify the best algorithm among all. The algorithms were evaluated based on quality indicators and Hypervolume Multiplicative Epsilon
Resumo:
Nonogram is a logical puzzle whose associated decision problem is NP-complete. It has applications in pattern recognition problems and data compression, among others. The puzzle consists in determining an assignment of colors to pixels distributed in a N M matrix that satisfies line and column constraints. A Nonogram is encoded by a vector whose elements specify the number of pixels in each row and column of a figure without specifying their coordinates. This work presents exact and heuristic approaches to solve Nonograms. The depth first search was one of the chosen exact approaches because it is a typical example of brute search algorithm that is easy to implement. Another implemented exact approach was based on the Las Vegas algorithm, so that we intend to investigate whether the randomness introduce by the Las Vegas-based algorithm would be an advantage over the depth first search. The Nonogram is also transformed into a Constraint Satisfaction Problem. Three heuristics approaches are proposed: a Tabu Search and two memetic algorithms. A new function to calculate the objective function is proposed. The approaches are applied on 234 instances, the size of the instances ranging from 5 x 5 to 100 x 100 size, and including logical and random Nonograms
Resumo:
The occurrence of problems related to the scattering and tangling phenomenon, such as the difficulty to do system maintenance, increasingly frequent. One way to solve this problem is related to the crosscutting concerns identification. To maximize its benefits, the identification must be performed from early stages of development process, but some works have reported that this has not been done in most of cases, making the system development susceptible to the errors incidence and prone to the refactoring later. This situation affects directly to the quality and cost of the system. PL-AOVgraph is a goal-oriented requirements modeling language which offers support to the relationships representation among requirements and provides separation of crosscutting concerns by crosscutting relationships representation. Therefore, this work presents a semi-automatic method to crosscutting concern identification in requirements specifications written in PL-AOVgraph. An adjacency matrix is used to identify the contributions relationships among the elements. The crosscutting concern identification is based in fan-out analysis of contribution relationships from the informations of adjacency matrix. When identified, the crosscutting relationships are created. And also, this method is implemented as a new module of ReqSys-MDD tool
Resumo:
There is a growing interest of the Computer Science education community for including testing concepts on introductory programming courses. Aiming at contributing to this issue, we introduce POPT, a Problem-Oriented Programming and Testing approach for Introductory Programming Courses. POPT main goal is to improve the traditional method of teaching introductory programming that concentrates mainly on implementation and neglects testing. POPT extends POP (Problem Oriented Programing) methodology proposed on the PhD Thesis of Andrea Mendonça (UFCG). In both methodologies POPT and POP, students skills in dealing with ill-defined problems must be developed since the first programming courses. In POPT however, students are stimulated to clarify ill-defined problem specifications, guided by de definition of test cases (in a table-like manner). This paper presents POPT, and TestBoot a tool developed to support the methodology. In order to evaluate the approach a case study and a controlled experiment (which adopted the Latin Square design) were performed. In an Introductory Programming course of Computer Science and Software Engineering Graduation Programs at the Federal University of Rio Grande do Norte, Brazil. The study results have shown that, when compared to a Blind Testing approach, POPT stimulates the implementation of programs of better external quality the first program version submitted by POPT students passed in twice the number of test cases (professor-defined ones) when compared to non-POPT students. Moreover, POPT students submitted fewer program versions and spent more time to submit the first version to the automatic evaluation system, which lead us to think that POPT students are stimulated to think better about the solution they are implementing. The controlled experiment confirmed the influence of the proposed methodology on the quality of the code developed by POPT students
Resumo:
The techniques of Machine Learning are applied in classification tasks to acquire knowledge through a set of data or information. Some learning methods proposed in literature are methods based on semissupervised learning; this is represented by small percentage of labeled data (supervised learning) combined with a quantity of label and non-labeled examples (unsupervised learning) during the training phase, which reduces, therefore, the need for a large quantity of labeled instances when only small dataset of labeled instances is available for training. A commom problem in semi-supervised learning is as random selection of instances, since most of paper use a random selection technique which can cause a negative impact. Much of machine learning methods treat single-label problems, in other words, problems where a given set of data are associated with a single class; however, through the requirement existent to classify data in a lot of domain, or more than one class, this classification as called multi-label classification. This work presents an experimental analysis of the results obtained using semissupervised learning in troubles of multi-label classification using reliability parameter as an aid in the classification data. Thus, the use of techniques of semissupervised learning and besides methods of multi-label classification, were essential to show the results
Resumo:
Web services are computational solutions designed according to the principles of Service Oriented Computing. Web services can be built upon pre-existing services available on the Internet by using composition languages. We propose a method to generate WS-BPEL processes from abstract specifications provided with high-level control-flow information. The proposed method allows the composition designer to concentrate on high-level specifi- cations, in order to increase productivity and generate specifications that are independent of specific web services. We consider service orchestrations, that is compositions where a central process coordinates all the operations of the application. The process of generating compositions is based on a rule rewriting algorithm, which has been extended to support basic control-flow information.We created a prototype of the extended refinement method and performed experiments over simple case studies
Resumo:
Data clustering is applied to various fields such as data mining, image processing and pattern recognition technique. Clustering algorithms splits a data set into clusters such that elements within the same cluster have a high degree of similarity, while elements belonging to different clusters have a high degree of dissimilarity. The Fuzzy C-Means Algorithm (FCM) is a fuzzy clustering algorithm most used and discussed in the literature. The performance of the FCM is strongly affected by the selection of the initial centers of the clusters. Therefore, the choice of a good set of initial cluster centers is very important for the performance of the algorithm. However, in FCM, the choice of initial centers is made randomly, making it difficult to find a good set. This paper proposes three new methods to obtain initial cluster centers, deterministically, the FCM algorithm, and can also be used in variants of the FCM. In this work these initialization methods were applied in variant ckMeans.With the proposed methods, we intend to obtain a set of initial centers which are close to the real cluster centers. With these new approaches startup if you want to reduce the number of iterations to converge these algorithms and processing time without affecting the quality of the cluster or even improve the quality in some cases. Accordingly, cluster validation indices were used to measure the quality of the clusters obtained by the modified FCM and ckMeans algorithms with the proposed initialization methods when applied to various data sets
Resumo:
Image segmentation is the process of subdiving an image into constituent regions or objects that have similar features. In video segmentation, more than subdividing the frames in object that have similar features, there is a consistency requirement among segmentations of successive frames of the video. Fuzzy segmentation is a region growing technique that assigns to each element in an image (which may have been corrupted by noise and/or shading) a grade of membership between 0 and 1 to an object. In this work we present an application that uses a fuzzy segmentation algorithm to identify and select particles in micrographs and an extension of the algorithm to perform video segmentation. Here, we treat a video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their motion and color properties. The color information can be extracted from a specific color space or from three channels of a set of color models that are selected based on the correlation of the information from all channels. The motion information is provided into the form of dense optical flows maps. Finally, segmentation of real and synthetic videos and their application in a non-photorealistic rendering (NPR) toll are presented
Resumo:
Non-Photorealisitc Rendering (NPR) is a class of techniques that aims to reproduce artistic techniques, trying to express feelings and moods on the rendered scenes, giving an aspect of that they had been made "by hand". Another way of defining NPR is that it is the processing of scenes, images or videos into artwork, generating scenes, images or videos that can have the visual appeal of pieces of art, expressing the visual and emotional characteristics of artistic styles. This dissertation presents a new method of NPR for stylization of images and videos, based on a typical artistic expression of the Northeast region of Brazil, that uses colored sand to compose landscape images on the inner surface of glass bottles. This method is comprised by one technique for generating 2D procedural textures of sand, and two techniques that mimic effects created by the artists using their tools. It also presents a method for generating 21 2D animations in sandbox from the stylized video. The temporal coherence within these stylized videos can be enforced on individual objects with the aid of a video segmentation algorithm. The present techniques in this work were used on stylization of synthetic and real videos, something close to impossible to be produced by artist in real life
Resumo:
This work has as main objective to find mathematical models based on linear parametric estimation techniques applied to the problem of calculating the grow of gas in oil wells. In particular we focus on achieving grow models applied to the case of wells that produce by plunger-lift technique on oil rigs, in which case, there are high peaks in the grow values that hinder their direct measurement by instruments. For this, we have developed estimators based on recursive least squares and make an analysis of statistical measures such as autocorrelation, cross-correlation, variogram and the cumulative periodogram, which are calculated recursively as data are obtained in real time from the plant in operation; the values obtained for these measures tell us how accurate the used model is and how it can be changed to better fit the measured values. The models have been tested in a pilot plant which emulates the process gas production in oil wells
Resumo:
Propomos que uma evolução de idéias científicas seja usada como instrumento de aprendizagem de conteúdos específicos e, em particular, para ressaltar como os conteúdos se articulam entre as disciplinas. Como exemplo, apresentamos um estudo sobre a proposta do demônio de Maxwell e discussões sobre sua exorcização, isto é, um estudo sobre a compreensão da natureza de um ser inteligente que atua dentro de um sistema físico e de como seria essa atuação. Estão envolvidos nesse problema fenômenos relacionados com várias teorias - Termodinâmica, Física Molecular, Mecânica Estatística, Teoria da Informação - dentro das disciplinas de Física, Química, Biologia, Computação. Entre diversas questões epistemológicas e conceituais aí contidas, será enfatizada a questão do objeto limitado de uma eoria científica, isto é, da limitação de seu significado aos fenômenos por ela compreendidos. A delimitação dos fenômenos estudados e as teorias e técnicas caracterizam a compreensão que vai realizar sua emergência concreta nos laboratórios. Essa compreensão vai dar também a possibilidade de atuação interdisciplinar.