976 resultados para Airway Remodeling
Resumo:
CSRP3 or muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein and a mechanosensor in cardiac myocytes. MLP regulation and function was studied in cultured neonatal rat myocytes treated with pharmacological or mechanical stimuli. Either verapamil or BDM decreased nuclear MLP while phenylephrine and cyclic strain increased it. These results suggest that myocyte contractility regulates MLP subcellular localization. When RNA polymerase II was inhibited with alpha-amanitin, nuclear MLP was reduced by 30%. However, when both RNA polymerase I and II were inhibited with actinomycin D, there was a 90% decrease in nuclear MLP suggesting that its nuclear translocation is regulated by both nuclear and nucleolar transcriptional activity. Using cell permeable synthetic peptides containing the putative nuclear localization signal (NLS) of MLP, nuclear import of the protein in cultured rat neonatal myocytes was inhibited. The NLS of MLP also localizes to the nucleolus. Inhibition of nuclear translocation prevented the increased protein accumulation in response to phenylephrine. Furthermore, cyclic strain of myocytes after prior NLS treatment to remove nuclear MLP resulted in disarrayed sarcomeres. Increased protein synthesis and brain natriuretic peptide expression were also prevented suggesting that MLP is required for remodeling of the myo filaments and gene expression. These findings suggest that nucleocytoplasmic shuttling MLP plays an important role in the regulation of the myocyte remodeling and hypertrophy and is required for adaptation to hypertrophic stimuli. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We describe the characterization of influenza A virus infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). Sialic acid receptors for both human and avian viruses, alpha-2,6- and alpha-2,3-linked sialic acids, respectively, were detected on the HAE cell surface, and their distribution accurately reflected that in human tracheobronchial tissue. Nonciliated cells present a higher proportion of alpha-2,6-linked sialic acid, while ciliated cells possess both sialic acid linkages. Although we found that human influenza viruses infected both ciliated and nonciliated cell types in the first round of infection, recent human H3N2 viruses infected a higher proportion of nonciliated cells in HAE than a 1968 pandemic-era human virus, which infected proportionally more ciliated cells. In contrast, avian influenza viruses exclusively infected ciliated cells. Although a broad-range neuraminidase abolished infection of HAE by human parainfluenza virus type 3, this treatment did not significantly affect infection by influenza viruses. All human viruses replicated efficiently in HAE, leading to accumulation of nascent virus released from the apical surface between 6 and 24 h postinfection with a low multiplicity of infection. Avian influenza A viruses also infected HAE, but spread was limited compared to that of human viruses. The nonciliated cell tropism of recent human H3N2 viruses reflects a preference for the sialic acid linkages displayed on these cell types and suggests a drift in the receptor binding phenotype of the H3 hemagglutinin protein as it evolves in humans away from its avian virus precursor.
Resumo:
To further elucidate the role of proteases capable of cleaving N-terminal proopiomelanocortin (N-POMC)-derived peptides, we have cloned two cDNAs encoding isoforms of the airway trypsin-like protease (AT) from mouse (MAT) and rat ( RAT), respectively. The open reading frames comprise 417 amino acids (aa) and 279 aa. The mouse AT gene was located at chromosome 5E1 and contains 10 exons. The longer isoform, which we designated MAT1 and RAT1, has a simple type II transmembrane protein structure, consisting of a short cytoplasmic domain, a transmembrane domain, a SEA (63-kDa sea urchin sperm protein, enteropeptidase, agrin) module, and a serine protease domain. The human homolog of MAT1 and RAT1 is the human AT ( HAT). The shorter isoform, designated MAT2 and RAT2, which contains an alternative N terminus, was formerly described in the rat as adrenal secretory serine protease (AsP) and has been shown to be involved in the processing of N-POMC-derived peptides. In contrast to the long isoform, neither MAT2 and RAT2 ( AsP) contain a transmembrane domain nor a SEA domain but an N-terminal signal peptide to direct the enzyme to the secretory pathway. The C terminus, covering the catalytic triad, is identical in both isoforms. Immunohistochemically, MAT/RAT was predominantly expressed in tissues of the upper gastrointestinal and the respiratory tract - but also in the adrenal gland. Moreover, isoform-specific RT-PCR and quantitative PCR analysis revealed a complex expression pattern of the two isoforms with differences between mice and rats. These findings indicate a multifunctional role of these proteases beyond adrenal proliferation.
Resumo:
Transport and deposition of charged inhaled aerosols in double planar bifurcation representing generation three to five of human respiratory system has been studied under a light activity breathing condition. Both steady and oscillatory laminar inhalation airflow is considered. Particle trajectories are calculated using a Lagrangian reference frame, which is dominated by the fluid force driven by airflow, gravity force and electrostatic forces (both of space and image charge forces). The particle-mesh method is selected to calculate the space charge force. This numerical study investigates the deposition efficiency in the three-dimensional model under various particle sizes, charge values, and inlet particle distribution. Numerical results indicate that particles carrying an adequate level of charge can improve deposition efficiency in the airway model.
Resumo:
The first pandemic of the 21(st) century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans.
Resumo:
Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signalling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors which convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain, 1Hz for 48 hours to mimic in vivo mechanical stress. Cells were also treated with and without L-NAME, a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres which was rescued by LNAME (P<0.05, n≥5 cultures). We hypothesized that the mechanism was through NOinduced alteration of myocyte gene expression. L-NAME up-regulated the mechanosensing proteins Muscle LIM protein (MLP (by 100%, p<0.05, n=4 cultures)) and lipoma preferred partner, a novel cardiac protein (LPP (by 80%, p<0.05, n=4 cultures)). L-NAME also significantly altered the subcellular localisation of LPP and MLP in a manner that favoured growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between iNOS and nNOS isoforms regulate gene expression. LPP knockdown by siRNA led to formation of α-actinin aggregates and Z-bodies showing that myofibrillogenesis was impaired. There was an up-regulation of E3 ubiquitin ligase (MUL1) by 75% (P<0.05, n=5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure. Keywords: Mechanotransduction, heart failure, stretch, heart, hypertrophy
Resumo:
Trypsin and mast cell tryptase can signal to epithelial cells, myocytes, and nerve fibers of the respiratory tract by cleaving proteinase-activated receptor 2 (PAR2). Since tryptase inhibitors are under development to treat asthma, a precise understanding of the contribution of PAR2 to airway inflammation is required. We examined the role of PAR2 in allergic inflammation of the airway by comparing OVA-sensitized and -challenged mice lacking or overexpressing PAR2. In wild-type mice, immunoreactive PAR2 was detected in airway epithelial cells and myocytes, and intranasal administration of a PAR2 agonist stimulated macrophage infiltration into bronchoalveolar lavage fluid. OVA challenge of immunized wild-type mice stimulated infiltration of leukocytes into bronchoalveolar lavage and induced airway hyperreactivity to inhaled methacholine. Compared with wild-type animals, eosinophil infiltration was inhibited by 73% in mice lacking PAR2 and increased by 88% in mice overexpressing PAR2. Similarly, compared with wild-type animals, airway hyperreactivity to inhaled methacholine (40 micro g/ml) was diminished 38% in mice lacking PAR2 and increased by 52% in mice overexpressing PAR2. PAR2 deletion also reduced IgE levels to OVA sensitization by 4-fold compared with those of wild-type animals. Thus, PAR2 contributes to the development of immunity and to allergic inflammation of the airway. Our results support the proposal that tryptase inhibitors and PAR2 antagonists may be useful therapies for inflammatory airway disease.
Resumo:
The permeability of the lung is critical in determining the disposition of inhaled drugs and the respiratory epithelium provides the main physical barrier to drug absorption. The 16HBE14o- human bronchial epithelial cell line has been developed recently as a model of the airway epithelium. In this study, the transport of 10 low molecular weight compounds was measured in the 16HBE14o- cell layers, with apical to basolateral (absorptive) apparent permeability coefficients (P(app)) ranging from 0.4 x 10(-6)cms(-1) for Tyr-D-Arg-Phe-Phe-NH(2) to 25.2x10(-6)cms(-1) for metoprolol. Permeability in 16HBE14o- cells was found to correlate with previously reported P(app) in Caco-2 cells and absorption rates in the isolated perfused rat lung (k(a,lung)) and the rat lung in vivo (k(a,in vivo)). Log linear relationships were established between P(app) in 16HBE14o- cells and P(app) in Caco-2 cells (r(2)=0.82), k(a,lung) (r(2)=0.78) and k(a,in vivo) (r(2)=0.68). The findings suggest that permeability in 16HBE14o- cells may be useful to predict the permeability of compounds in the lung, although no advantage of using the organ-specific cell line 16HBE14o- compared to Caco-2 cells was found in this study.
Resumo:
Purpose: The aim of this study was to evaluate, through fluorescence analysis, the effect that different interimplant distances, after prosthetic restoration, will have on bone remodeling in submerged and nonsubmerged implants restored with a ""platform switch."" Materials and Methods: Fifty-six Ankylos implants were placed 1.5 mm subcrestally in seven dogs. The implants were placed so that two fixed prostheses, with three interimplant contacts separated by 1-mm, 2-mm, and 3-mm distances, could be fabricated for each side of the mandible. The sides and the positions of the groups were selected randomly. To better evaluate bone remodeling, calcein green was injected 3 days before placement of the prostheses at 12 weeks postimplantation. At 3 days before sacrifice (8 weeks postloading), alizarin red was injected. The amounts of remodeled bone within the different interimplant areas were compared statistically before and after loading in submerged and nonsubmerged implants. Results: Statistically significant differences existed in the percentage of remodeled bone seen in the different regions. Mean percentages of remodeled bone in the submerged and nonsubmerged groups, respectively, were as follows: for the 1-mm distance, 23.0% +/- 0.05% and 23.1% +/- 0.03% preloading and 27.0% +/- 0.03% and 25.2% +/- 0.04% postloading, for the 2-mm distance, 18.2% +/- 0.05% and 18.1% +/- 0.04% preloading and 21.3% +/- 0.07% and 19.9% +/- 0.03% postloading, for the 3-mm distance, 18.3% +/- 0.03% and 18.3% +/- 0.03% preloading and 18.8% +/- 0.04% and 19.8% +/- 0.04% postloading, for distal-extension regions, 16.6% +/- 0.02% and 17.4% +/- 0.04% preloading and 17.0% +/- 0.04% and 18.4% +/- 0.04% postloading. Conclusions: Based upon this animal study, loading increases bone formation for submerged or nonsubmerged implants, and the interimplant distance of 1 mm appears to result in more pronounced bone remodeling than the 2-mm or 3-mm distances in implants with a ""platform switch."" INT J ORAL MAXILLOFAC IMPLANTS 2009;24:257-266
Resumo:
Objectives Little information is available on the molecular events that occur during graft incorporation over time. The calvarial bone (Cb) grafts have been reported to produce greater responses compared with other donor regions in maxillofacial reconstructions, but the scientific evidences for this are still lacking. The objectives of this study are (1) to study the morphological pattern of Cb onlay bone grafts and compare them with the biological events through immunohistochemical responses and (2) to establish the effects of perforations in maintaining the volume and bone density of the receptor bed. Material and methods Sixty New Zealand White rabbits were submitted to Cb onlay bone grafts on the mandible. In 30 rabbits, the receptor bed was perforated (perforated group), while for the remaining animals the bed was kept intact (non-perforated group). Six animals from each group were sacrificed at 5, 7, 10, 20 and 60 days after surgery. Histological sections from the grafted area were prepared for immunohistochemical and histological analyses. Immuno-labeling was found for proteins Osteoprotegerin (OPG), receptor activator of nuclear factor-kappa beta ligand (RANKL), alkaline phosphatase (ALP), osteopontin (OPN), vascular endothelial growth factor (VEGF), tartrate-resistant acid phosphatase (TRAP), Type I collagen (COL I) and osteocalcin (OC). The tomography examination [computerized tomography (CT) scan] was conducted just after surgery and at the sacrifice. Results The histological findings revealed that the perforations contributed to higher bone deposition during the initial stages at the graft-receptor bed interface, accelerating the graft incorporation process. The results of the CT scan showed lower resorption for the perforated group (P < 0.05), and both groups showed high bone density rates at 60 days. This set of evidences is corroborated by the immunohistochemical outcomes indicating that proteins associated with revascularization and osteogenesis (VEGF, OPN, TRAP and ALP) were found in higher levels in the perforated group. Conclusions These findings indicate that the bone volume of calvarial grafts is better maintained when the receptor bed is perforated, probably resulting from more effective graft revascularization and greater bone deposition. The process of bone resorption peaked between 20 and 60 days post-operatively in both groups although significantly less in the perforated group. To cite this article:Pedrosa Jr WF, Okamoto R, Faria PEP, Arnez MFM, Xavier SP, Salata LA. Immunohistochemical, tomographic and histological study on onlay bone grafts remodeling. Part II: calvarial bone.Clin. Oral Impl. Res. 20, 2009; 1254-1264.doi: 10.1111/j.1600-0501.2009.01747.x.
Resumo:
The information concerning the molecular events taking place in onlay bone grafts are still incipient. The objective of the present study is to correlate the effects of perforation of resident bone bed on (1) the timing of onlay autogenous graft revascularization; (2) the maintenance of volume/density of the graft (assessed through tomography); and (3) the occurrence of bone remodeling proteins (using immunohistochemistry technique) delivered in the graft. Thirty-six New Zealand White rabbits were subjected to iliac crest onlay bone grafting on both sides of the mandible. The bone bed was drill-perforated on one side aiming at accelerating revascularization, whereas on the other side it was kept intact. After grafts fixation and flaps suture all animals were submitted to tomography on both mandible sites. Six animals were sacrificed, respectively, at 3, 5, 7, 10, 20 and 60 days after surgery. A second tomography was taken just before sacrifice. Histological slides were prepared from each grafted site for both immunohistochemistry analysis [osteopontin, osteocalcin, type I collagen and vascular endothelial growth factor (VEGF) anti-bodies] and histometric analysis. The values on bone volume measured on tomography showed no statistic significance (P >= 0.05) between perforated and intact sites. Grafts placed on perforated beds showed higher bone density values compared with non-perforated ones at 3 days (P <= 0.05). This correlation was inverted at 60 days postoperatively. The findings from VEGF labeling revealed a tendency for earlier revascularization in the perforated group. The early revascularization of bone grafts accelerated the bone remodeling process (osteocalcin, type I collagen and osteopontin) that led to an increased bone deposition at 10 days. The extended osteoblast differentiation process at intermediate stages in the perforated group cooperated for a denser bone at 60 days.
Resumo:
We evaluated the development of arterial hypertension, cardiac function, and collagen deposition, as well as the level of components of the renin-angiotensin system in the heart of transgenic rats that overexpress an angiotensin (Ang)-(1-7)-producing fusion protein, TGR(A1-7)3292 (TG), which induces a lifetime increase in circulating levels of this peptide. After 30 days of the induction of the deoxycorticosterone acetate (DOCA)-salt hypertension model, DOCA-TG rats were hypertensive but presented a lower systolic arterial pressure in comparison with DOCA-Sprague-Dawley (SD) rats. In contrast to DOCA-SD rats that presented left ventricle (LV) hypertrophy and diastolic dysfunction, DOCA-TG rats did not develop cardiac hypertrophy or changes in ventricular function. In addition, DOCA-TG rats showed attenuation in mRNA expression for collagen type I and III compared with the increased levels of DOCA-SD rats. Ang II plasma and LV levels were reduced in SD and TG hypertensive rats in comparison with normotensive animals. DOCA-TG rats presented a reduction in plasma Ang-(1-7) levels; however, there was a great increase in Ang-(1-7) (approximate to 3-fold) accompanied by a decrease in mRNA expression of both angiotensin-converting enzyme and angiotensin-converting enzyme 2 in the LV. The mRNA expression of Mas and Ang II type 1 receptors in the LV was not significantly changed in DOCA-SD or DOCA-TG rats. This study showed that TG rats with increased circulating levels of Ang-(1-7) are protected against cardiac dysfunction and fibrosis and also present an attenuated increase in blood pressure after DOCA-salt hypertension. In addition, DOCA-TG rats showed an important local increase in Ang-(1-7) levels in the LV, which might have contributed to the attenuation of cardiac dysfunction and prefibrotic lesions. (Hypertension. 2010;55:889-896.)
Resumo:
In this study, we investigated the oxidative stress influence in some prosurvival and proapoptotic proteins after myocardial infarction (MI). Male Wistar rats were divided in two groups: Sham-operated (control) and MI. MI was induced by left coronary artery occlusion. 28-days after surgery, echocardiographic, morphometric, and hemodynamic parameters were evaluated. Redox status (reduced to oxidized glutathione ratio, GSH/GSSG) and hydrogen peroxide levels (H(2)O(2)) were measured in heart tissue. The p-ERK/ERK, p-Akt/Akt, p-mTOR/mTOR and p-GSK-3 beta/GSK-3 beta ratios, as well as apoptosis-inducing factor (AIF) myocardial protein expression were quantified by Western blot. MI group showed an increase in cardiac hypertrophy (23%) associated with a decrease in ejection fraction (38%) and increase in left ventricular end-diastolic pressure (82%) when compared to control, characterizing ventricular dysfunction. Redox status imbalance was seen in MI animals, as evidenced by the decrease in the GSH/GSSG ratio (30%) and increased levels of H(2)O(2) (45%). This group also showed an increase in the ERK phosphorylation and a reduction of Akt and mTOR phosphorylation when compared to control. Moreover, we showed a reduction in the GSK-3 beta phosphorylation and an increase in AIF protein expression in MI group. Taken together, our results show increased H(2)O(2) levels and cellular redox imbalance associated to a higher p-ERK and AIF immunocontent, which would contribute to a maladaptive hypertrophy phenotype.
Resumo:
Redox processes associated with controlled generation of reactive oxygen species (ROS) by NADPH oxidase (Nox) add an essential level of regulation to signaling pathways underlying physiological processes. We evaluated the ROS generation in the main visual relays of the mammalian brain, namely the superior colliculus (SC) and the dorsal lateral geniculate nucleus (DLG), after ocular enucleation in adult rats. Dihydroethidium (DHE) oxidation revealed increased ROS generation in SC and DLG between 1 and 30 days postlesion. ROS generation was decreased by the Nox inhibitors diphenyleneiodonium chloride (DPI) and apocynin. Real-time PCR results revealed that Nox 2 was upregulated in both retinorecipient structures after deafferentation, whereas Nox 1 and Nox 4 were upregulated only in the SC. To evaluate the role of ROS in structural remodeling after the lesions, apocynin was given to enucleated rats and immunohistochemistry was conducted for markers of neuronal remodeling into SC and DLG. Immunohistochemical data showed that ocular enucleation produces an increase of neurofilament and microtubule-associated protein-2 immunostaining in both SC and DLG, which was markedly attenuated by apocynin treatment. Taken together, the findings of the present study suggest a novel role for Nox-induced ROS signaling in mediating neuronal remodeling in visual areas after ocular enucleation. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.