980 resultados para Agricultural engineering
Resumo:
Color information is widely used in non-destructive quality assessment of perishable horticultural produces. The presented work investigated color changes of pepper (Capsicum annuum L.) samples received from retail system. The effect of storage temperature (10±2°C and 24±4°C) on surface color and firmness was analyzed. Hue spectra was calculated using sum of saturations. A ColorLite sph850 (400-700nm) spectrophotometer was used as reference instrument. Dynamic firmness was measured on three locations of the surface: tip cap, middle and shoulder. Significant effects of storage conditions and surface location on both color and firmness were observed. Hue spectra responded sensitively to color development of pepper. Prediction model (PLS) was used to estimate dynamic firmess based on hue spectra. Accuracy was very different depending on the location. Firmness of the tip cap was predicted with the highest accuracy (RMSEP=0.0335). On the other hand, middle region cannot be used for such purpose. Due to the simplicity and rapid processing, analysis of hue spectra is a promising tool for evaluation of color in postharvest and food industry.
Resumo:
Tackling societal and environmental challenges requires new approaches that connect top-down global oversight with bottom-up subnational knowledge. We present a novel framework for participatory development of spatially explicit scenarios at national scale that model socioeconomic and environmental dynamics by reconciling local stakeholder perspectives and national spatial data. We illustrate results generated by this approach and evaluate its potential to contribute to a greater understanding of the relationship between development pathways and sustainability. Using the lens of land use and land cover changes, and engaging 240 stakeholders representing subnational (seven forest management zones) and the national level, we applied the framework to assess alternative development strategies in the Tanzania mainland to the year 2025, under either a business as usual or a green development scenario. In the business as usual scenario, no productivity gain is expected, cultivated land expands by ~ 2% per year (up to 88,808 km²), with large impacts on woodlands and wetlands. Despite legal protection, encroachment of natural forest occurs along reserve borders. Additional wood demand leads to degradation, i.e., loss of tree cover and biomass, up to 80,426 km² of wooded land. The alternative green economy scenario envisages decreasing degradation and deforestation with increasing productivity (+10%) and implementation of payment for ecosystem service schemes. In this scenario, cropland expands by 44,132 km² and the additional degradation is limited to 35,778 km². This scenario development framework captures perspectives and knowledge across a diverse range of stakeholders and regions. Although further effort is required to extend its applicability, improve users’ equity, and reduce costs the resulting spatial outputs can be used to inform national level planning and policy implementation associated with sustainable development, especially the REDD+ climate mitigation strategy.
Resumo:
In the past decades, social-ecological systems (SESs) worldwide have undergone dramatic transformations with often detrimental consequences for livelihoods. Although resilience thinking offers promising conceptual frameworks to understand SES transformations, empirical resilience assessments of real-world SESs are still rare because SES complexity requires integrating knowledge, theories, and approaches from different disciplines. Taking up this challenge, we empirically assess the resilience of a South African pastoral SES to drought using various methods from natural and social sciences. In the ecological subsystem, we analyze rangelands’ ability to buffer drought effects on forage provision, using soil and vegetation indicators. In the social subsystem, we assess households’ and communities’ capacities to mitigate drought effects, applying agronomic and institutional indicators and benchmarking against practices and institutions in traditional pastoral SESs. Our results indicate that a decoupling of livelihoods from livestock-generated income was initiated by government interventions in the 1930s. In the post-apartheid phase, minimum-input strategies of herd management were adopted, leading to a recovery of rangeland vegetation due to unintentionally reduced stocking densities. Because current livelihood security is mainly based on external monetary resources (pensions, child grants, and disability grants), household resilience to drought is higher than in historical phases. Our study is one of the first to use a truly multidisciplinary resilience assessment. Conflicting results from partial assessments underline that measuring narrow indicator sets may impede a deeper understanding of SES transformations. The results also imply that the resilience of contemporary, open SESs cannot be explained by an inward-looking approach because essential connections and drivers at other scales have become relevant in the globalized world. Our study thus has helped to identify pitfalls in empirical resilience assessment and to improve the conceptualization of SES dynamics.
Resumo:
This paper presents an experimental study on the evolution of carrot properties along convective drying by hot air at different temperatures (50ºC, 60ºC and 70ºC). The thermo-physical properties calculated were: specific heat, thermal conductivity, diffusivity, enthalpy, heat and mass transfer coefficients. Furthermore, the data of drying kinetics were treated and adjusted according to the three empirical models: Page, Henderson & Pabis and Logarithmic. The sorption isotherms were also determined and fitted using the GAB model. The results showed that, generally, the thermo-physical properties presented a decline during the drying process, and the decrease was faster for the temperature of 70ºC. It was possible to verify that the Page model presented the best prediction ability for the representation of kinetics of the drying process. The GAB model used to fit the sorption isotherms showed a good prediction capacity and, at a given water activity, despite some variations, the amount of water sorbed increased with the decrease of drying temperature.
Resumo:
The aim of the present study was to investigate the effect of different production and conservation factors on some properties of blueberries. Among the production factors considered were cultivar (Duke, Bluecrop and Ozarkblue) and production mode (organic or conventional). Regarding the conservation factors were evaluated temperature (ambient or refrigeration) and storage time (0, 7 and 14 days). The properties under study belong to three categories: physical properties (color and texture); chemical properties (moisture content, sugars and acidity) and phenolic and antioxidant properties (total phenols, anthocyanins, tannins, ABTS antioxidant activity, DPPH antioxidant activity). The results revealed that moisture content was only influenced by cultivar and that both acidity and sugar contents varied according to the production mode used. Also it was evidenced that the antioxidant activity was not statistically different between cultivars, production modes or conservation conditions. Regarding the phenolic compounds, the tannins were significantly higher for the blueberries produced in organic agriculture. Regarding color significant differences were also encountered and the most intense blue was found in blueberries from cv. Duke, produced in organic farming and stored under refrigeration. Textural attributes were also very significantly influenced by all factors at study: cultivar, production mode and conservation, and the berries from cv. Duke stored under refrigeration showed the highest firmness.
Resumo:
Mode of access: Internet.
Resumo:
Vols. after Series 1963, no. 1 lack series year and numbering.
Resumo:
2016
Resumo:
The objective of this research was to evaluate the thermal efficiency of roofs used on individual shelters during milk-feeding stage of Girolando calves. The research was conducted at a farm located in a dry region of Pernambuco state, Brazil. The experimental design was completely randomized, with 27 Holstein × Gir dairy crossbred calves housed in shelters with three roofing materials (fibre cement tile, recycled tile, and thatched roofs). The recycled tiles and thatched roofs provided reductions of 18.7 and 14.6% in radiant thermal load, respectively. Regardless the roofing material, all animals increased their respiratory rate to maintain thermal equilibrium.
Spatial variability of satured soil hydraulic conductivity in the region of Araguaia River - Brazil.
Resumo:
This study evaluates the spatial variability of saturated hydraulic conductivity in the soil in an area of 51,850 ha at the headwaters of the Araguaia River MT/GO. This area is highly vulnerable because it is a location of recharging through natural water infiltration of the Guarani Aquifer System and an area of intense increases in agriculture since its adoption by growers in the last 30 years. Soil samples were collected at 383 points, geographically located by GPS. The samples were collected from depths of 0 - 20 cm and 60 - 80 cm. Exploratory statistics and box-plot were used in the descriptive analysis and semivariogram were constructed to determine the spatial model. The exploratory analysis showed that the mean hydraulic conductivity in the superficial layer was less than at the level of 60-80 cm; however, the greatest variability evaluated with a coefficient of variation also was from this layer. Data tended towards a normal distribution. These results can be explained by the greater soil compaction in the superficial layer. The semivariogram models, adjusted for the two layers, were exponential and demonstrated moderate and strong dependence, with ranges of 5000 and 3000 utm respectively. It was concluded that soil use is influencing the spatial distribution model of the hydraulic conductivity in the region.
Resumo:
In this work, the risk of groundwater contamination from organic substances in sewage sludge from wastewater treatment stations was evaluated in its worst case. The sewage sludge was applied as fertilizer in corn culture, prioritizing the substances for monitoring. The assessing risk took place in a Typic Distrophic Red Latossol (TDRL) area, in the county district of Jaguariúna, SP. The simulators CMLS-94 and WGEN were used to evaluate the risk of twenty-eight organic substances in sewage sludge to leach to groundwater. The risk of groundwater contamination was accomplished for a single sludge dose application in a thousand independent and equally probable years, simulated to esteem the substances leaching in one year after the application date of the sludge. It is presented the substances that should be priorly monitored in groundwater.