781 resultados para Agent-based methodologies
Resumo:
Of the ways in which agent behaviour can be regulated in a multiagent system, electronic contracting – based on explicit representation of different parties' responsibilities, and the agreement of all parties to them – has significant potential for modern industrial applications. Based on this assumption, the CONTRACT project aims to develop and apply electronic contracting and contract-based monitoring and verification techniques in real world applications. This paper presents results from the initial phase of the project, which focused on requirements solicitation and analysis. Specifically, we survey four use cases from diverse industrial applications, examine how they can benefit from an agent-based electronic contracting infrastructure and outline the technical requirements that would be placed on such an infrastructure. We present the designed CONTRACT architecture and describe how it may fulfil these requirements. In addition to motivating our work on the contract-based infrastructure, the paper aims to provide a much needed community resource in terms of use case themselves and to provide a clear commercial context for the development of work on contract-based system.
Resumo:
Interaction protocols establish how different computational entities can interact with each other. The interaction can be finalized to the exchange of data, as in 'communication protocols', or can be oriented to achieve some result, as in 'application protocols'. Moreover, with the increasing complexity of modern distributed systems, protocols are used also to control such a complexity, and to ensure that the system as a whole evolves with certain features. However, the extensive use of protocols has raised some issues, from the language for specifying them to the several verification aspects. Computational Logic provides models, languages and tools that can be effectively adopted to address such issues: its declarative nature can be exploited for a protocol specification language, while its operational counterpart can be used to reason upon such specifications. In this thesis we propose a proof-theoretic framework, called SCIFF, together with its extensions. SCIFF is based on Abductive Logic Programming, and provides a formal specification language with a clear declarative semantics (based on abduction). The operational counterpart is given by a proof procedure, that allows to reason upon the specifications and to test the conformance of given interactions w.r.t. a defined protocol. Moreover, by suitably adapting the SCIFF Framework, we propose solutions for addressing (1) the protocol properties verification (g-SCIFF Framework), and (2) the a-priori conformance verification of peers w.r.t. the given protocol (AlLoWS Framework). We introduce also an agent based architecture, the SCIFF Agent Platform, where the same protocol specification can be used to program and to ease the implementation task of the interacting peers.
Resumo:
Reasoning under uncertainty is a human capacity that in software system is necessary and often hidden. Argumentation theory and logic make explicit non-monotonic information in order to enable automatic forms of reasoning under uncertainty. In human organization Distributed Cognition and Activity Theory explain how artifacts are fundamental in all cognitive process. Then, in this thesis we search to understand the use of cognitive artifacts in an new argumentation framework for an agent-based artificial society.
Resumo:
Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every home and in every pocket. As a consequence, in the last years software is having an epochal turn toward concurrency, distribution, interaction which is pushed by the evolution of hardware architectures and the growing of network availability. This calls for introducing further abstraction layers on top of those provided by classical mainstream programming paradigms, to tackle more effectively the new complexities that developers have to face in everyday programming. A convergence it is recognizable in the mainstream toward the adoption of the actor paradigm as a mean to unite object-oriented programming and concurrency. Nevertheless, we argue that the actor paradigm can only be considered a good starting point to provide a more comprehensive response to such a fundamental and radical change in software development. Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming (AOP) as a high-level general purpose programming paradigm, natural evolution of actors and objects, introducing a further level of human-inspired concepts for programming software systems, meant to simplify the design and programming of concurrent, distributed, reactive/interactive programs. To this end, in the dissertation first we construct the required background by studying the state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on the engineering of integrated programming technologies for developing agent-based systems in their classical application domains: artificial intelligence and distributed artificial intelligence. Then, we shift the perspective moving from the development of intelligent software systems, toward general purpose software development. Using the expertise maturated during the phase of background construction, we introduce a general-purpose programming language named simpAL, which founds its roots on general principles and practices of software development, and at the same time provides an agent-oriented level of abstraction for the engineering of general purpose software systems.
Resumo:
In recent years, the ability to respond to real time changes in operations and reconfigurability in equipment are likely to become essential characteristics for next generation intralogistics systems as well as the level of automation, cost effectiveness and maximum throughput. In order to cope with turbulences and the increasing level of dynamic conditions, future intralogistics systems have to feature short reaction times, high flexibility in processes and the ability to adapt to frequent changes. The increasing autonomy and complexity in processes of today’s intralogistics systems requires new and innovative management approaches, which allow a fast response to (un)anticipated events and adaptation to changing environment in order to reduce the negative consequences of these events. The ability of a system to respond effectively a disruption depends more on the decisions taken before the event than those taken during or after. In this context, anticipatory change planning can be a usable approach for managers to make contingency plans for intralogistics systems to deal with the rapidly changing marketplace. This paper proposes a simulation-based decision making framework for the anticipatory change planning of intralogistics systems. This approach includes the quantitative assessments based on the simulation in defined scenarios as well as the analysis of performance availability that combines the flexibility corridors of different performance dimensions. The implementation of the approach is illustrated on a new intralogistics technology called the Cellular Transport System.
Resumo:
Hypertutorials optimize five features - presentation, learner control, practice, feedback, and elaborative learning resources. Previous research showed graduate students significantly and overwhelmingly preferred Web-based hypertutorials to conventional "Book-on-the-Web" statistics or research design lessons. The current report shows that the source of hypertutorials' superiority in student evaluations of instruction lies in their hypertutorial features. Randomized comparisons between the two methodologies were conducted in two successive iterations of a graduate level health informatics research design and evaluation course. The two versions contained the same text and graphics, but differed in the presence or absence of hypertutorial features: Elaborative learning resources, practice, feedback, and amount of learner control. Students gave high evaluations to both Web-based methodologies, but consistently rated the hypertutorial lessons as superior. Significant differences localized in the hypertutorial subscale that measured student responses to hypertutorial features.
Resumo:
This document contains detailed description of the design and the implementation of a multi-agent application controlling traffic lights in a city together with a system for simulating traffic and testing. The goal of this thesis is to design and build a simplified intelligent and distributed solution to the problem with the traffic in the big cities following different good practices in order to allow future refining of the model of the real world. The problem of the traffic in the big cities is still a problem that cannot be solved. Not only is the increasing number of cars a reason for the traffic jams, but also the way the traffic is organized. Usually, the intersections with traffic lights are replaced by roundabouts or interchanges to increase the number of cars that can cross the intersection in certain time. But still there are places where the infrastructure cannot be changed and the traffic light semaphores are the only way to control the car flows. In real life, the traffic lights have a predefined plan for change or they receive information from a centralized system when and how they have to change. But what if the traffic lights can cooperate and decide on their own when and how to change? Using this problem, the purpose of the thesis is to explore different agent-based software engineering approaches to design and build a non-conventional distributed system. From the software engineering point of view, the goal of the thesis is to apply the knowledge and use the skills, acquired during the various courses of the master program in Software Engineering, while solving a practical and complex problem such as the traffic in the cities.
Resumo:
Current Physiologically based pharmacokinetic (PBPK) models are inductive. We present an additional, different approach that is based on the synthetic rather than the inductive approach to modeling and simulation. It relies on object-oriented programming A model of the referent system in its experimental context is synthesized by assembling objects that represent components such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system on which we focus. In silico experiments begin with administration of objects representing actual compounds. Data are collected in a manner analogous to that in the referent PK experiments. The synthetic modeling method allows for recognition and representation of discrete event and discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An application is developed for sucrose and antipyrine, administered separately and together PBPK modeling has made extensive progress in characterizing abstracted PK properties but this has also been its limitation. Now, other important questions and possible extensions emerge. How are these PK properties and the observed behaviors generated? The inherent heuristic limitations of traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic models of the type described here are specifically intended to help answer such questions. Analogous to wet-lab experimental models, they retain their applicability even when broken apart into sub-components. Having and applying this new class of models along with traditional PK modeling methods is expected to increase the productivity of pharmaceutical research at all levels that make use of modeling and simulation.
Resumo:
In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.
Resumo:
Multi-agent systems are complex systems comprised of multiple intelligent agents that act either independently or in cooperation with one another. Agent-based modelling is a method for studying complex systems like economies, societies, ecologies etc. Due to their complexity, very often mathematical analysis is limited in its ability to analyse such systems. In this case, agent-based modelling offers a practical, constructive method of analysis. The objective of this book is to shed light on some emergent properties of multi-agent systems. The authors focus their investigation on the effect of knowledge exchange on the convergence of complex, multi-agent systems.
Resumo:
Agent-based technology is playing an increasingly important role in today’s economy. Usually a multi-agent system is needed to model an economic system such as a market system, in which heterogeneous trading agents interact with each other autonomously. Two questions often need to be answered regarding such systems: 1) How to design an interacting mechanism that facilitates efficient resource allocation among usually self-interested trading agents? 2) How to design an effective strategy in some specific market mechanisms for an agent to maximise its economic returns? For automated market systems, auction is the most popular mechanism to solve resource allocation problems among their participants. However, auction comes in hundreds of different formats, in which some are better than others in terms of not only the allocative efficiency but also other properties e.g., whether it generates high revenue for the auctioneer, whether it induces stable behaviour of the bidders. In addition, different strategies result in very different performance under the same auction rules. With this background, we are inevitably intrigued to investigate auction mechanism and strategy designs for agent-based economics. The international Trading Agent Competition (TAC) Ad Auction (AA) competition provides a very useful platform to develop and test agent strategies in Generalised Second Price auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid prices according to the Market-based Value Per Click and selects a set of keyword queries with highest expected profit to bid on to maximise its expected profit under the limit of conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments. The TAC CAT tournament provides an environment for investigating the optimal design of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only outperforms most specialist agents designed by other institutions but also achieves high allocative efficiencies, transaction success rates and average trader profits. Moreover, we reveal some insights of the CAT: 1) successful markets should maintain a stable and high market share of intra-marginal traders; 2) a specialist’s performance is dependent on the distribution of trading strategies. However, typical double auction models assume trading agents have a fixed trading direction of either buy or sell. With this limitation they cannot directly reflect the fact that traders in financial markets (the most popular application of double auction) decide their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Experiments are conducted under both dynamic and static settings of the continuous BDA market. We find that the allocative efficiency of a continuous BDA market mainly comes from rational selection of trading directions. Furthermore, we introduce a high-performance Kernel trading strategy in the BDA market which uses kernel probability density estimator built on historical transaction data to decide optimal order prices. Kernel trading strategy outperforms some popular intelligent double auction trading strategies including ZIP, GD and RE in the continuous BDA market by making the highest profit in static games and obtaining the best wealth in dynamic games.
An agent approach to improving radio frequency identification enabled Returnable Transport Equipment
Resumo:
Returnable transport equipment (RTE) such as pallets form an integral part of the supply chain and poor management leads to costly losses. Companies often address this matter by outsourcing the management of RTE to logistics service providers (LSPs). LSPs are faced with the task to provide logistical expertise to reduce RTE related waste, whilst differentiating their own services to remain competitive. In the current challenging economic climate, the role of the LSP to deliver innovative ways to achieve competitive advantage has never been so important. It is reported that radio frequency identification (RFID) application to RTE enables LSPs such as DHL to gain competitive advantage and offer clients improvements such as loss reduction, process efficiency improvement and effective security. However, the increased visibility and functionality of RFID enabled RTE requires further investigation in regards to decision‐making. The distributed nature of the RTE network favours a decentralised decision‐making format. Agents are an effective way to represent objects from the bottom‐up, capturing the behaviour and enabling localised decision‐making. Therefore, an agent based system is proposed to represent the RTE network and utilise the visibility and data gathered from RFID tags. Two types of agents are developed in order to represent the trucks and RTE, which have bespoke rules and algorithms in order to facilitate negotiations. The aim is to create schedules, which integrate RTE pick‐ups as the trucks go back to the depot. The findings assert that: - agent based modelling provides an autonomous tool, which is effective in modelling RFID enabled RTE in a decentralised utilising the real‐time data facility. ‐ the RFID enabled RTE model developed enables autonomous agent interaction, which leads to a feasible schedule integrating both forward and reverse flows for each RTE batch. ‐ the RTE agent scheduling algorithm developed promotes the utilisation of RTE by including an automatic return flow for each batch of RTE, whilst considering the fleet costs andutilisation rates. ‐ the research conducted contributes an agent based platform, which LSPs can use in order to assess the most appropriate strategies to implement for RTE network improvement for each of their clients.
Resumo:
The main idea of our approach is that the domain ontology is not only the instrument of learning but an object of examining student skills. We propose for students to build the domain ontology of examine discipline and then compare it with etalon one. Analysis of student mistakes allows to propose them personalized recommendations and to improve the course materials in general. For knowledge interoperability we apply Semantic Web technologies. Application of agent-based technologies in e-learning provides the personification of students and tutors and saved all users from the routine operations.
Resumo:
Interaction engineering is fundamental for agent based systems. In this paper we will present a design pattern for the core of a multi-agent platform - the message communication and behavior activation mechanisms - using language features of C#. An agent platform is developed based on the pattern structure, which is legiti- mated through experiences of using JADE in real applications. Results of the communication model are compared against the popular JADE platform.