901 resultados para Age distribution (Demography)
Resumo:
ENGLISH: All available longline data on skipjack captured in the Pacific Ocean by Japanese research vessels (1949-1965) and from incidental skipjack catches by Japanese commercial vessels (1956-1964) were analyzed. As skipjack are not specifically sought by longline vessels, the data are limited. Considering this it was found that: longline gear captures skipjack of wider size-range and is more selective for larger skipjack than conventional fishing methods, i.e. pole-and-line and purse-seine; skipjack are widely and almost continuously distributed across the Pacific; throughout the year average hook-rates are greater in the southeastern Pacific than in the northwestern Pacific; areas of high hook-rate shift south during the second and third quarters and north during the first and fourth quarters; in the western Pacific the north-south range of the catch distribution was greatest in the first and fourth quarters; skipjack hook-rates are relatively high in the northwestern Pacific east of Japan only during the first and fourth quarters; the highest hook-rates were recorded in extensive areas along the equator (from lO°N to 20°8 between approximately 155°W-100°W); generally more skipjack were captured by research longline gear in water temperature ranges approaching both the upper and lower temperature limits of skipjack distribution (18-21C and 26-28C), than is the case in surface skipjack fisheries; tentative comparisons of longline skipjack catch distributions with Pacific current systems, suggests low skipjack abundance in both North Pacific Central and North Pacific Equatorial water; the sex ratio was 95 males : 63 females in a small sample of skipjack examined; longlines capture skipjack of three, and possibly more, age groups; in skipjack size-composition samples studied, the smaller modal group (65 cm) observed in January-March in the northwestern Pacific (1600E-180oE and 20oN-45°N) corresponds in size to the larger modal group appearing in the late-summer surface fishery off the Izu-Bonin Islands southeast of Japan, and also compares in modal size to the skipjack taken in the Hawaiian fishery in spring time; the analysis of skipjack catches by hook position on the longline and by death-rate studies, indicates that part of the catch is made while the gear is in motion near the surface, and a lesser part of the catch is made when the gear is stabilized at a depth of 70 to 140 m. A brief discussion is given, in the light of new information presented, on several hypotheses by other authors concerning the population structure and migration of skipjack in the Pacific Ocean. SPANISH: Se analizaron todos los datos disponibles de la pesca con palangre de barriletes capturados en el Océano Pacífico por barcos japoneses de investigación (1949-1965) y por las capturas incidentales de los barcos comerciales japoneses (1956-1964). Como los barcos palangreros específicamente, no persiguen al barrilete, los datos son limitados. Considerando ésto, se encontró: que el arte palangrero obtiene barriletes con una distribución más amplia de tallas, y es más selectivo en cuanto a los barriletes de mayor talla, que los métodos convencionales de pesca, Le. cañas de pescar y redes de cerco; el barrilete se encuentra amplia y casi continuamente distribuido a través del Pacífico; en todo el año, las tasas promedio de captura por anzuelo son superiores en el Pacífico sudoriental que las del Pacífico noroeste; las áreas con una tasa alta de captura por anzuelo, se cambian hacia el sur durante los trimestres segundo y tercero, y durante los trimestres primero y cuarto hacia el norte; en el Pacífico occidental la amplitud de la distribución de captura norte-sur, fue superior en los trimestres primero y cuarto; las tasas de captura por anzuelo de barrilete, son relativamente altas en el Pacífico noroeste al este del Japón, únicamente durante los trimestres primero y cuarto; las tasas de captura por anzuelo más altas fueron registradas en extensas áreas a lo largo del ecuador (desde los 10°N hasta los 20°S, aproximadamente entre los 155°W-100°W) ; generalmente las artes palangreras de investigación capturaron más barrilete en aguas en las que la temperatura se aproximaba a los límites más altos o bajos de la temperatura en la distribución del barrilete (18-21 C y 26-28 C), que en el caso de la pesca superficial de barrilete; las comparaciones tentativas de la captura de barrilete con palangre, con el sistema de las corrientes del Pacífico, sugieren una abundancia inferior de barrilete tanto en las aguas del Pacífico central del norte como en las del Pacífico ecuatorial del norte; la proporcíon sexual examinada en una pequeña muestra de barriletes, fue de 95 machos y 63 hembras; los palangreros capturan barriletes de tres grupos de edad y posiblemente de más; en las muestras estudiadas de la composición de las tallas de barrilete, el grupo modal más pequeño (65 cm), observado en enero-marzo en el Pacífico noroeste (160 0E-180° y 20 oN-45°N), corresponde en talla al grupo modal más grande que aparece en la pesca de superficie a fines del verano frente a las Islas Izu-Bonín al sudeste del Japón, y se compara también con la talla modal del barrilete obtenido en la pesca hawaiana en la época de primavera; el análisis de las capturas de barrilete por medio del estudio de la posición de los anzuelos en el palangre y por la tasa de mortalidad, indica que parte de la captura se efectúa cuando el equipo está en movimiento cerca a la superficie y una parte inferior de la captura se realiza, cuando las artes se estabilizan a una profundidad de 70 a 140 m. Se ofrece una breve discusión sobre varias hipótesis de otros autores, en vista de la nueva información presentada referente a la estructura poblacional y a la migración del barrilete en el Océano Pacífico. (PDF contains 100 pages.)
Resumo:
ENGLISH: Monthly estimates of the abundance of yellowfin tuna by age groups and regions within the eastern Pacific Ocean during 1970-1988 are made, using purse-seine catch rates, length-frequency samples, and results from cohort analysis. The numbers of individuals caught of each age group in each logged purse-seine set are estimated, using the tonnage from that set and length-frequency distribution from the "nearest" length-frequency sample(s). Nearest refers to the closest length frequency sample(s) to the purse-seine set in time, distance, and set type (dolphin associated, floating object associated, skipjack associated, none of these, and some combinations). Catch rates are initially calculated as the estimated number of individuals of the age group caught per hour of searching. Then, to remove the effects of set type and vessel speed, they are standardized, using separate weiznted generalized linear models for each age group. The standardized catch rates at the center of each 2.5 0 quadrangle-month are estimated, using locally-weighted least-squares regressions on latitude, longitude and date, and then combined into larger regions. Catch rates within these regions are converted to numbers of yellowfin, using the mean age composition from cohort analysis. The variances of the abundance estimates within regions are large for 0-, 1-, and 5-year-olds, but small for 1.5- to 4-year-olds, except during periods of low fishing activity. Mean annual catch rate estimates for the entire eastern Pacific Ocean are significantly positively correlated with mean abundance estimates from cohort analysis for age groups ranging from 1.5 to 4 years old. Catch-rate indices of abundance by age are expected to be useful in conjunction with data on reproductive biology to estimate total egg production within regions. The estimates may also be useful in understanding geographic and temporal variations in age-specific availability to purse seiners, as well as age-specific movements. SPANISH: Se calculan estimaciones mensuales de la abundancia del atún aleta amarilla por grupos de edad y regiones en el Océano Pacífico oriental durante 1970-1988, usando tasas de captura cerquera, muestras de frecuencia de talla, y los resultados del análisis de cohortes. Se estima el número de individuos capturados de cada grupo de edad en cada lance cerquero registrado, usando el tonelaje del lance en cuestión y la distribución de frecuencia de talla de la(s) muestra(s) de frecuencia de talla "más cercana/s)," "Más cercana" significa la(s) muestra(s) de frecuencia de talla más parecida(s) al lance cerquero en cuanto a fecha, distancia, y tipo de lance (asociado con delfines, con objeto flotante, con barrilete, con ninguno de éstos, y algunas combinaciones). Se calculan inicialmente las tasas de captura como el número estimado de individuos del grupo de edad capturado por hora de búsqueda. A continuación, para eliminar los efectos del tipo de lance y la velocidad del barco, se estandardizan dichas tasas, usando un modelo lineal generalizado ponderado, para cada grupo por separado. Se estima la tasa de captura estandardizada al centro de cada cuadrángulo de 2.5°-mes, usando regresiones de mínimos cuadrados ponderados localmente por latitud, longitud, y fecha, y entonces combinándolas en regiones mayores. Se convierten las tasas de captura dentro de estas regiones en números de aletas amarillas individuales, usando el número promedio por edad proveniente del análisis de cohortes. Las varianzas de las estimaciones de la abundancia dentro de las regiones son grandes para los peces de O, 1, Y5 años de edad, pero pequeñas para aquellos de entre 1.5 Y4 años de edad, excepto durante períodos de poca actividad pesquera. Las estimaciones de la tasa de captura media anual para todo el Océano Pacífico oriental están correlacionadas positivamente de forma significativa con las estimaciones de la abundancia media del análisis de las cohortes para los grupos de edad de entre 1.5 y 4 años. Se espera que los índices de abundancia por edad basados en las tasas de captura sean útiles, en conjunto con datos de la biología reproductiva, para estimar la producción total de huevos por regiones. Las estimaciones podrían asimismo ser útiles para la comprensión de las variaciones geográficas y temporales de la disponibilidad específica por edad a los barcos cerqueros, y también las migraciones específicas por edad. (PDF contains 35 pages.)
Resumo:
A research program was designed (1) to map regional lithological units of the lunar surface based on measurements of spatial variations in spectral reflectance, and, (2) to establish the sequence of the formation of such lithological units from measurements of the accumulated affects of impacting bodies.
Spectral reflectance data were obtained by scanning luminance variations over the lunar surface at three wavelengths (0.4µ, 0.52µ, and 0.7µ). These luminance measurements were reduced to normalized spectral reflectance values relative to a standard area in More Serenitotis. The spectral type of each lunar area was identified from the shape of its reflectance spectrum. From these data lithological units or regions of constant color were identified. The maria fall into two major spectral classes: circular moria like More Serenitotis contain S-type or red material and thin, irregular, expansive maria like Mare Tranquillitatis contain T-type or blue material. Four distinct subtypes of S-type reflectances and two of T-type reflectances exist. As these six subtypes occur in a number of lunar regions, it is concluded that they represent specific types of material rather than some homologous set of a few end members.
The relative ages or sequence of formation of these more units were established from measurements of the accumulated impacts which have occurred since more formation. A model was developed which relates the integrated flux of particles which hove impacted a surface to the distribution of craters as functions of size and shape. Erosion of craters is caused chiefly by small bodies which produce negligible individual changes in crater shape. Hence the shape of a crater can be used to estimate the total number of small impacts that have occurred since the crater was formed. Relative ages of a surface can then be obtained from measurements of the slopes of the walls of the oldest craters formed on the surface. The results show that different maria and regions within them were emplaced at different times. An approximate absolute time scale was derived from Apollo 11 crystallization ages under an assumption of a constant rote of impacting for the last 4 x 10^9 yrs. Assuming, constant flux, the period of mare formation lasted from over 4 x 10^9 yrs to about 1.5 x 10^9 yrs ago.
A synthesis of the results of relative age measurements and of spectral reflectance mapping shows that (1) the formation of the lunar maria occurred in three stages; material of only one spectral type was deposited in each stage, (2) two distinct kinds of maria exist, each type distinguished by morphology, structure, gravity anomalies, time of formation, and spectral reflectance type, and (3) individual maria have complicated histories; they contain a variety of lithic units emplaced at different times.
Resumo:
English: We describe an age-structured statistical catch-at-length analysis (A-SCALA) based on the MULTIFAN-CL model of Fournier et al. (1998). The analysis is applied independently to both the yellowfin and the bigeye tuna populations of the eastern Pacific Ocean (EPO). We model the populations from 1975 to 1999, based on quarterly time steps. Only a single stock for each species is assumed for each analysis, but multiple fisheries that are spatially separate are modeled to allow for spatial differences in catchability and selectivity. The analysis allows for error in the effort-fishing mortality relationship, temporal trends in catchability, temporal variation in recruitment, relationships between the environment and recruitment and between the environment and catchability, and differences in selectivity and catchability among fisheries. The model is fit to total catch data and proportional catch-at-length data conditioned on effort. The A-SCALA method is a statistical approach, and therefore recognizes that the data collected from the fishery do not perfectly represent the population. Also, there is uncertainty in our knowledge about the dynamics of the system and uncertainty about how the observed data relate to the real population. The use of likelihood functions allow us to model the uncertainty in the data collected from the population, and the inclusion of estimable process error allows us to model the uncertainties in the dynamics of the system. The statistical approach allows for the calculation of confidence intervals and the testing of hypotheses. We use a Bayesian version of the maximum likelihood framework that includes distributional constraints on temporal variation in recruitment, the effort-fishing mortality relationship, and catchability. Curvature penalties for selectivity parameters and penalties on extreme fishing mortality rates are also included in the objective function. The mode of the joint posterior distribution is used as an estimate of the model parameters. Confidence intervals are calculated using the normal approximation method. It should be noted that the estimation method includes constraints and priors and therefore the confidence intervals are different from traditionally calculated confidence intervals. Management reference points are calculated, and forward projections are carried out to provide advice for making management decisions for the yellowfin and bigeye populations. Spanish: Describimos un análisis estadístico de captura a talla estructurado por edad, A-SCALA (del inglés age-structured statistical catch-at-length analysis), basado en el modelo MULTIFAN- CL de Fournier et al. (1998). Se aplica el análisis independientemente a las poblaciones de atunes aleta amarilla y patudo del Océano Pacífico oriental (OPO). Modelamos las poblaciones de 1975 a 1999, en pasos trimestrales. Se supone solamente una sola población para cada especie para cada análisis, pero se modelan pesquerías múltiples espacialmente separadas para tomar en cuenta diferencias espaciales en la capturabilidad y selectividad. El análisis toma en cuenta error en la relación esfuerzo-mortalidad por pesca, tendencias temporales en la capturabilidad, variación temporal en el reclutamiento, relaciones entre el medio ambiente y el reclutamiento y entre el medio ambiente y la capturabilidad, y diferencias en selectividad y capturabilidad entre pesquerías. Se ajusta el modelo a datos de captura total y a datos de captura a talla proporcional condicionados sobre esfuerzo. El método A-SCALA es un enfoque estadístico, y reconoce por lo tanto que los datos obtenidos de la pesca no representan la población perfectamente. Además, hay incertidumbre en nuestros conocimientos de la dinámica del sistema e incertidumbre sobre la relación entre los datos observados y la población real. El uso de funciones de verosimilitud nos permite modelar la incertidumbre en los datos obtenidos de la población, y la inclusión de un error de proceso estimable nos permite modelar las incertidumbres en la dinámica del sistema. El enfoque estadístico permite calcular intervalos de confianza y comprobar hipótesis. Usamos una versión bayesiana del marco de verosimilitud máxima que incluye constreñimientos distribucionales sobre la variación temporal en el reclutamiento, la relación esfuerzo-mortalidad por pesca, y la capturabilidad. Se incluyen también en la función objetivo penalidades por curvatura para los parámetros de selectividad y penalidades por tasas extremas de mortalidad por pesca. Se usa la moda de la distribución posterior conjunta como estimación de los parámetros del modelo. Se calculan los intervalos de confianza usando el método de aproximación normal. Cabe destacar que el método de estimación incluye constreñimientos y distribuciones previas y por lo tanto los intervalos de confianza son diferentes de los intervalos de confianza calculados de forma tradicional. Se calculan puntos de referencia para el ordenamiento, y se realizan proyecciones a futuro para asesorar la toma de decisiones para el ordenamiento de las poblaciones de aleta amarilla y patudo.
Resumo:
Red bream (Beryx decadactylus) is a commercially important deep-sea benthopelagic fish with a circumglobal distribution on insular and continental slopes and seamounts. In the United States, small numbers are caught incidentally in the wreckfish (Polyprion americanus) fishery which operates off the southeastern coast, but no biological information exists for the management of the U.S. red bream population. For this study, otoliths (n=163) and gonads (n=161) were collected from commercially caught red bream between 2003 and 2008 to determine life history parameters. Specimens ranged in size from 410 to 630 mm fork length and were all determined to be mature by histological examination of the gonads. Females in spawning condition were observed from June through September, and reproductively active males were found year-round. Sectioned otoliths were difficult to interpret, but maximum age estimates were much higher than the 15 years previously reported for this species from the eastern North Atlantic based on whole-otolith analysis. Estimated ages ranged from 8 to 69 years, and a minimum lifespan of 49 years was validated by using bomb radiocarbon dating. Natural mortality was estimated at 0.06/yr. This study shows that red bream are longer lived and more vulnerable to overfishing than previously assumed and should be managed carefully to prevent overexploitation.
Resumo:
Ichthyoplankton surveys were conducted in shelf and slope waters of the northern Gulf of Mexico during the months of May–September in 2005 and 2006 to investigate the potential role of this region as spawning and nursery habitat of sailfish (Istiophorus platypterus). During the two-year study, 2426 sailfish larvae were collected, ranging in size from 2.0 to 24.3 mm standard length. Mean density for all neuston net collections (n=288) combined was 1.5 sailfish per 1000 m2, and maximum density was observed within frontal features created by hydrodynamic convergence (2.3 sailfish per 1000 m2). Sagittal otoliths were extracted from 1330 larvae, and otolith microstructure analysis indicated that the sailfish ranged in age from 4 to 24 days after hatching (mean=10.5 d, standard deviation [SD]=3.2 d). Instantaneous growth coefficients (g) among survey periods (n=5) ranged from 0.113 to 0.127, and growth peaked during July 2005 collections when density within frontal features was highest. Daily instantaneous mortality rates (Z) ranged from 0.228 to 0.381, and Z was indexed to instantaneous weight-specific growth (G) to assess stage-specific production potential of larval cohorts. Ratios of G to Z were greater than 1.0 for all but one cohort examined, indicating that cohorts were gaining biomass during the majority of months investigated. Stage-specific production potential, in combination with catch rates and densities of larvae, indicates that the Gulf of Mexico likely represents important spawning and nursery habitat for sailfish.
Resumo:
Arrowtooth flounder (Atheresthes stomias) has had the highest abundance of any groundfish species in the Gulf of Alaska since the 1970s (Matarese et al., 2003; Turnock et al., 2005; Blood et al., 2007); however, commercial catches have been restricted because Pacific halibut (Hippoglossus stenolepis) are caught as bycatch in the fishery. Arrowtooth flounder plays a key role in the ecosystem because it is a dominant organism within the food web, both as an apex predator of fish and invertebrates, as well as an important prey for walleye pollock (Theragra chalcogramma; Aydin et al., 2002). Walleye pollock is the dominant groundfish in the Bering Sea, a principal groundfish in the Gulf of Alaska, and the primary prey for marine mammals. The distribution of arrowtooth flounder extends from Cape Navarin and the eastern Sea of Okhotsk in Russia, across the Bering Sea, Aleutian Islands, Gulf of Alaska, and south to the coast of central California (Shuntov, 1964; Britt and Martin, 2001; Chetvergov, 2001; Weinberg et al., 2002; Zenger, 2004). Because of the importance of arrowtooth flounder in the marine ecosystem of A laska, a maturity study of this species was undertaken to determine age-at-maturity, which is essential for age-based stock management models. Before these results, management has had to rely upon a length-at-maturity-based estimate (Zimmermann, 1997) to manage stocks in the Gulf of Alaska (GOA), Bering Sea, and Aleutian Islands. The central GOA was selected as the location for this maturity study Age- and length-at-maturity of female arrowtooth flounder (Atheresthes stomias) in the Gulf of Alaska because it contains approximately 70% of the total Gulf of Alaska arrowtooth flounder biomass (1.9×106 t, age 3 and older)— the highest percentage in the world (Shuntov, 1964; Britt and Martin, 2001; Weinberg et al., 2002; Wilderbuer and Nichol, 2006).
Resumo:
Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids (omega-3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and omega-3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of omega-3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and omega-3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.
Resumo:
Age of onset (AO) of Huntington disease (HD) is mainly determined by the length of the CAG repeat expansion (CAGexp) in exon 1 of the HTT gene. Additional genetic variation has been suggested to contribute to AO, although the mechanism by which it could affect AO is presently unknown. The aim of this study is to explore the contribution of candidate genetic factors to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (earliest AO or eAO), and the first motor symptoms age (motor AO or mAO). Multiple linear regression analyses were performed between genetic variation within 20 candidate genes and eAO or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene expression analyses were carried out by RT-qPCR with an independent sample of 35 HD patients from Basque Country Hospitals. We found suggestive association signals between HD eAO and/or mAO and genetic variation within the E2F2, ATF7IP, GRIN2A, GRIN2B, LINC01559, HIP1 and GRIK2 genes. Among them, the most significant was the association between eAO and rs2742976, mapping to the promoter region of E2F2 transcription factor. Furthermore, rs2742976 T allele patient carriers exhibited significantly lower lymphocyte E2F2 gene expression, suggesting a possible implication of E2F2-dependent transcriptional activity in HD pathogenesis. Thus, E2F2 emerges as a new potential HD AO modifier factor.
Resumo:
When estimating parameters that constitute a discrete probability distribution {pj}, it is difficult to determine how constraints should be made to guarantee that the estimated parameters { pˆj} constitute a probability distribution (i.e., pˆj>0, Σ pˆj =1). For age distributions estimated from mixtures of length-at-age distributions, the EM (expectationmaximization) algorithm (Hasselblad, 1966; Hoenig and Heisey, 1987; Kimura and Chikuni, 1987), restricted least squares (Clark, 1981), and weak quasisolutions (Troynikov, 2004) have all been used. Each of these methods appears to guarantee that the estimated distribution will be a true probability distribution with all categories greater than or equal to zero and with individual probabilities that sum to one. In addition, all these methods appear to provide a theoretical basis for solutions that will be either maximum-likelihood estimates or at least convergent to a probability distribut
The Northern Rockfish, Sebastes polyspinis, in Alaska: Commercial Fishery, Distribution, and Biology
Resumo:
The northern rockfish, Sebastes polyspinis, is the second most abundant rockfish in Alaska, and it supports a valuable trawl fishery. Little information is available, however, on either the biology of this species or its commercial fishery. To provide a synopsis of information on northern rockfish in Alaska, this study examined data for this species from commercial fishery observations in 1990–98 and from fishery-independent trawl surveys in 1980–99. Nearly all the commercial catch came from bottom trawling, mostly by large factory-trawlers, although smaller shore-based trawlers in recent years took an increasing portion of the catch in the Gulf of Alaska. Most of the northern rockfish catch in the Gulf of Alaska was taken by a directed fishery, whereas that of the Aleutian Islands predominantly came as discarded bycatch in the Atka mackerel fishery. In both regions, most of the catch was taken from a number of relatively small and discrete fishing grounds at depths of 75–150 m in the Gulf of Alaska and 75–175 m in the Aleutian Islands. These grounds, especially in the Gulf of Alaska, are on shallow rises or banks located on the outer continental shelf, and often are surrounded by deeper water. Five fishing grounds were identified in the Gulf of Alaska, and eleven in the Aleutian Islands. One fishing ground in the Gulf of Alaska, the “Snakehead” south of Kodiak Island, accounted for 46% of the total northern rockfish catch in this region. Analysis of the survey data generally revealed similar patterns of geographic distribution as those seen in the fishery, although some of the commercial fishing grounds did not stand out as areas of special abundance in the surveys. The surveys also found two areas of abundance that were not evident in the fishery data. Relatively few juvenile northern rockfish were caught in any of the surveys, but those taken in the Gulf of Alaska tended to occur more inshore and at shallower depths than adults. Individual size of northern rockfish was substantially larger in the Gulf of Alaska than in the Aleutian Islands according to both fishery and survey data. Analysis of age data from each region supports this, as Gulf of Alaska fish were found to grow significantly faster and reach a larger maximum length than those in the Aleutian Islands. Sex ratio in the Gulf of Alaska was nearly 50:50, but females predominated in the Aleutian Islands by a ratio of 57:43. In both regions, size of females was significantly larger than males.
Resumo:
Demographic parameters were derived from sectioned otoliths of John’s Snapper (Lutjanus johnii) from 4 regions across 9° of latitude and 23° of longitude in northern Australia. Latitudinal variation in size and growth rates of this species greatly exceeded longitudinal variation. Populations of John’s Snapper farthest from the equator had the largest body sizes, in line with James’s rule, and the fastest growth rates, contrary to the temperature-size rule for ectotherms. A maximum age of 28.6 years, nearly 3 times previous estimates, was recorded and the largest individual was 990 mm in fork length. Females grew to a larger mean asymptotic fork length (L∞) than did males, a finding consistent with functional gonochorism. Otolith weight at age and gonad weight at length followed the same latitudinal trends seen in length at age. Length at maturity was ~72–87% of L∞ and varied by ~23% across the full latitudinal gradient, but age at first maturity was consistently in the range of 6–10 years, indicating that basic growth trajectories were similar across vastly different environments. We discuss both the need for complementary reproductive data in age-based studies and the insights gained from experiments where the concept of oxygen- and capacity-limited thermal tolerance is applied to explain the mechanistic causes of James’s rule in tropical fish species.
Resumo:
The prowfish (Zaprora silenus) is an infrequent component of bottom trawl catches collected on stock assessment surveys. Based on presence or absence in over 40,000 trawl catches taken throughout Alaskan waters southward to southern California, prowfish are most frequently encountered in the Gulf of Alaska and the Aleutian Islands at the edge of the continental shelf. Based on data from two trawl surveys, relative abundance indicated by catch per swept area reaches a maximum between 100 m and 200 m depth and is much higher in the Aleutian Islands than in the Gulf of Alaska. Females weigh 3.7% more than males of the same length. Weight-length functions are W (g) = 0.0164 L2.92 (males) and W = 0.0170 L2.92 (females). Length at age does not differ between sexes and is described by L = 89.3(1 – e–0.181(t+0.554)), where L is total length in cm and t is age in years. Females reached 50% maturity at a length of 57.0 cm and an age of 5.1 years. Prowfish diet is almost entirely composed of gelatinous zooplankton, primarily scyphozoa and salps.
Resumo:
Spatial variation in demographic parameters of the red throat emperor (Lethrinus miniatus) was examined among 12 coral reefs in three geographic regions (Townsville, Mackay, and Storm Cay) spanning over 3° of latitude of the Great Barrier Reef, Australia. Estimates of demographic parameters were based on age estimates from counts of annuli in whole otoliths because there was no significant difference in age estimates between whole and sectioned otoliths. There were significant regional differences in age structures, rates of somatic and otolith growth, and total mortality. The Townsville region was characterized by the greatest proportion of older fish, the smallest maximum size, and the lowest rates of otolith growth and total mortality. In contrast the Mackay region was characterized by the highest proportion of younger fish, the largest maximum size, and the highest rates of otolith growth and total mortality. Demographic parameters for the Storm Cay region were intermediate between the other two regions. Historic differences in fishing pressure and regional differences in productivity are two alternative hypotheses given to explain the regional patterns in demographic parameters. All demographic parameters were similar among the four reefs within each region. Thus, subpopulations with relatively homogeneous demographic parameters occurred on scales of reef clusters. Previous studies, by contrast, have found substantial between-reef variation in demographic parameters within regions. Thus spatial variation in demographic parameters for L. miniatus may differ from what is assumed typical for a coral-reef fish metapopulation.
Resumo:
Triennial bottom trawl survey data from 1984 to 1996 were used to evaluate changes in the summer distribution of walleye pollock in the western and central Gulf of Alaska. Differences between several age groups of pollock were evaluated. Distribution was examined in relation to several physical characteristics, including bottom depth and distance from land. Interspecies associations were also analyzed with the Bray-Curtis clustering technique to better understand community structure. Our results indicated that although the population numbers decreased, high concentrations of pollock remained in the same areas during 1984–96. However, there was an increase in the number of stations where low-density pollock concentrations of all ages were observed, which resulted in a decrease in mean population density of pollock within the GOA region. Patterns emerging from our data suggested an alternative to Mac-Call’s “basin hypothesis” which states that as population numbers decrease, there should be a contraction of the population range to optimal habitats. During 1984–96 there was a concurrent precipitous decline in Steller sea lions in the Gulf of Alaska. The results of our study suggest that decreases in the mean density of adult pollock, the main food in the Steller sea lion diet, combined with slight changes in the distribution of pollock (age-1 pollock in particular) in the mid-1980s, may have contributed to decreased foraging efficiency in Steller sea lions. Our results support the prevailing conceptual model for pollock ontogeny, although there is evidence that substantial spawning may also occur outside of Shelikof Strait.