1000 resultados para Adams Modelling
Resumo:
Nanopartikel, BaSO4, Mikroemulsion, Fällung, Modellierung
Resumo:
Mo-Si-B alloys, Real microstructures, Voronoi structures, Microstructural characterization, Modelling and finite element simulations, Effective material properties, Damage and Crack growth, tensile strength, fracture toughness
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
At the moment there is a lack of methodological approaches to formalization of management of innovative projects relating to production systems, as well as to adaptation and practical use of the existing approaches. This article is about one potential approach to the management of innovative projects, which makes the building of innovative process models possible based on objective approach. It outlines the frameworks for the building of innovative project models, and describes the method of transition from conceptual modelling to innovative project management. In this case, the model alone and together with parameters used for evaluation of the project may be unique and depends on the special features of the project, preferences of decision-making person, and production and economic system in which it is to be implemented. Unlike existing approaches, this concept does not place any restrictions on types of models and makes it possible to take into account the specificities of economic and production systems. Principles embodied in the model allow its usage as a basis for simulation model to be used in one of specialized simulation systems, as well as for information system providing information support of decision-making process in production and economic systems both newly developed by the company (enterprise) and designed on the basis of available information systems that interact through the exchange of data. In addition, this article shows that the development of conceptual foundations of innovative project management in the economic and production systems is inseparable from the development of the theory of industrial control systems, and their comprehensive study may be reduced to a set of elements represented as certain algorithms, models and evaluations. Thus, the study of innovative process may be conducted in both directions: from general to particular, and vice versa.
Resumo:
Empirical studies on industrial location do not typically distinguish between new and relocated establishments. This paper addresses this shortcoming using data on the frequency of these events in municipalities of the same economic-administrative region. This enables us to test not only for differences in their determinants but also for interrelations between start-ups and relocations. Estimates from count regression models for cross-section and panel data show that, although partial effects differ, common patterns arise in “institutional” and “neoclassical” explanatory factors. Also, start-ups and relocations are positive but asymmetrically related. JEL classification: C25, R30, R10. Keywords: cities, count data models, industrial location
Resumo:
Els bacteris són la forma dominant de vida del planeta: poden sobreviure en medis molt adversos, i en alguns casos poden generar substàncies que quan les ingerim ens són tòxiques. La seva presència en els aliments fa que la microbiologia predictiva sigui un camp imprescindible en la microbiologia dels aliments per garantir la seguretat alimentària. Un cultiu bacterià pot passar per quatre fases de creixement: latència, exponencial, estacionària i de mort. En aquest treball s’ha avançat en la comprensió dels fenòmens intrínsecs a la fase de latència, que és de gran interès en l’àmbit de la microbiologia predictiva. Aquest estudi, realitzat al llarg de quatre anys, s’ha abordat des de la metodologia Individual-based Modelling (IbM) amb el simulador INDISIM (INDividual DIScrete SIMulation), que ha estat millorat per poder fer-ho. INDISIM ha permès estudiar dues causes de la fase de latència de forma separada, i abordar l’estudi del comportament del cultiu des d’una perspectiva mesoscòpica. S’ha vist que la fase de latència ha de ser estudiada com un procés dinàmic, i no definida per un paràmetre. L’estudi de l’evolució de variables com la distribució de propietats individuals entre la població (per exemple, la distribució de masses) o la velocitat de creixement, han permès distingir dues etapes en la fase de latència, inicial i de transició, i aprofundir en la comprensió del que passa a nivell cel•lular. S’han observat experimentalment amb citometria de flux diversos resultats previstos per les simulacions. La coincidència entre simulacions i experiments no és trivial ni casual: el sistema estudiat és un sistema complex, i per tant la coincidència del comportament al llarg del temps de diversos paràmetres interrelacionats és un aval a la metodologia emprada en les simulacions. Es pot afirmar, doncs, que s’ha verificat experimentalment la bondat de la metodologia INDISIM.
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
Report for the scientific sojourn at the Simon Fraser University, Canada, from July to September 2007. General context: landscape change during the last years is having significant impacts on biodiversity in many Mediterranean areas. Land abandonment, urbanisation and specially fire are profoundly transforming large areas in the Western Mediterranean basin and we know little on how these changes influence species distribution and in particular how these species will respond to further change in a context of global change including climate. General objectives: integrate landscape and population dynamics models in a platform allowing capturing species distribution responses to landscape changes and assessing impact on species distribution of different scenarios of further change. Specific objective 1: develop a landscape dynamic model capturing fire and forest succession dynamics in Catalonia and linked to a stochastic landscape occupancy (SLOM) (or spatially explicit population, SEPM) model for the Ortolan bunting, a species strongly linked to fire related habitat in the region. Predictions from the occupancy or spatially explicit population Ortolan bunting model (SEPM) should be evaluated using data from the DINDIS database. This database tracks bird colonisation of recently burnt big areas (&50 ha). Through a number of different SEPM scenarios with different values for a number of parameter, we should be able to assess different hypothesis in factors driving bird colonisation in new burnt patches. These factors to be mainly, landscape context (i.e. difficulty to reach the patch, and potential presence of coloniser sources), dispersal constraints, type of regenerating vegetation after fire, and species characteristics (niche breadth, etc).
Resumo:
Report for the scientific sojourn carried out at the Uppsala Universitet, Sweden, from April to July the 2007. Two series of analogue models are used to explore ductile-frictional contrasts of the basal décollement in the development of oblique and transverse structures simultaneously to thin-skinned shortening. These models simulate the evolution of the Central External Sierras (Southern Pyrenees, Spain), which constitute the frontal emerging part of the southernmost Pyrenean thrust sheet. They are characterized by the presence of transverse N-S to NW-SE anticlines, which are perpendicular to the Pyrenean structural trend and developed in the hangingwall of the Santo Domingo thrust system, detaching on an unevenly distributed Triassic materials (evaporitic-dolomitic interfingerings). Model setup performs a décollement made by three patches of silicone neighbouring pure brittle sand. Model series A test the thickness ratio between overburden and décollement. Model series B test the width of frictional detachment areas. Model results show how deformation reaches further in areas detached on ductile layer whereas frictional décollement areas assimilate the strain by means of an additional uplift. This replicates the structural style of Central External Sierras: higher structural relief of N-S anticlines with regard to orogen-parallel structures, absence of a representative ductile décollement in the core, tilting towards the orogen and foreland-side closure not thrusted by the frontal emerging South-Pyrenean thrust.
Resumo:
1. Statistical modelling is often used to relate sparse biological survey data to remotely derived environmental predictors, thereby providing a basis for predictively mapping biodiversity across an entire region of interest. The most popular strategy for such modelling has been to model distributions of individual species one at a time. Spatial modelling of biodiversity at the community level may, however, confer significant benefits for applications involving very large numbers of species, particularly if many of these species are recorded infrequently. 2. Community-level modelling combines data from multiple species and produces information on spatial pattern in the distribution of biodiversity at a collective community level instead of, or in addition to, the level of individual species. Spatial outputs from community-level modelling include predictive mapping of community types (groups of locations with similar species composition), species groups (groups of species with similar distributions), axes or gradients of compositional variation, levels of compositional dissimilarity between pairs of locations, and various macro-ecological properties (e.g. species richness). 3. Three broad modelling strategies can be used to generate these outputs: (i) 'assemble first, predict later', in which biological survey data are first classified, ordinated or aggregated to produce community-level entities or attributes that are then modelled in relation to environmental predictors; (ii) 'predict first, assemble later', in which individual species are modelled one at a time as a function of environmental variables, to produce a stack of species distribution maps that is then subjected to classification, ordination or aggregation; and (iii) 'assemble and predict together', in which all species are modelled simultaneously, within a single integrated modelling process. These strategies each have particular strengths and weaknesses, depending on the intended purpose of modelling and the type, quality and quantity of data involved. 4. Synthesis and applications. The potential benefits of modelling large multispecies data sets using community-level, as opposed to species-level, approaches include faster processing, increased power to detect shared patterns of environmental response across rarely recorded species, and enhanced capacity to synthesize complex data into a form more readily interpretable by scientists and decision-makers. Community-level modelling therefore deserves to be considered more often, and more widely, as a potential alternative or supplement to modelling individual species.
Resumo:
The role of land cover change as a significant component of global change has become increasingly recognized in recent decades. Large databases measuring land cover change, and the data which can potentially be used to explain the observed changes, are also becoming more commonly available. When developing statistical models to investigate observed changes, it is important to be aware that the chosen sampling strategy and modelling techniques can influence results. We present a comparison of three sampling strategies and two forms of grouped logistic regression models (multinomial and ordinal) in the investigation of patterns of successional change after agricultural land abandonment in Switzerland. Results indicated that both ordinal and nominal transitional change occurs in the landscape and that the use of different sampling regimes and modelling techniques as investigative tools yield different results. Synthesis and applications. Our multimodel inference identified successfully a set of consistently selected indicators of land cover change, which can be used to predict further change, including annual average temperature, the number of already overgrown neighbouring areas of land and distance to historically destructive avalanche sites. This allows for more reliable decision making and planning with respect to landscape management. Although both model approaches gave similar results, ordinal regression yielded more parsimonious models that identified the important predictors of land cover change more efficiently. Thus, this approach is favourable where land cover change pattern can be interpreted as an ordinal process. Otherwise, multinomial logistic regression is a viable alternative.