965 resultados para Activated Human Platelets


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells from two melanoma cell lines, Me43 and GLL-19, were cloned in methylcellulose cultures and 20 randomly selected colonies from each line were picked up by micromanipulation, expanded in liquid cultures, and considered as clones of the original cell lines. The antigenic cell surface phenotype of these clones defined by panel of 12 monoclonal antibodies (MAb) was analyzed by flow microfluorometry (FMF) using a fluorescence-activated cell sorter (FACS II) and compared with the known stable phenotype of the parent cell line. The antibody panel consisted of eight MAb against melanoma-associated antigens, two MAb against monomorphic determinants of HLA-DR (la) and HLA-ABC, respectively, one MAb against the common acute lymphoblastic leukemia antigen (CALLA) and one MAb against carcinoembryonic antigen used as control. A remarkable heterogeneity in terms of qualitative and quantitative expression of the cell surface antigens studied was observed among and within the different clones. The single-cell origin of the clones was assessed by comparing the clonogenic cell frequency, determined by limiting dilutions in microculture plates, with the cloning efficiency observed in Petri dishes. Both techniques using methylcellulose medium gave the same percentages of growing colonies. Cells from four Me43 clones were recloned in methylcellulose and the phenotype of five randomly selected subclones from each clone was analysed using the same panel of monoclonal antibodies. Each subclone also displayed heterogeneity with individual phenotypes different from that of the original clone and from the parental Me43 cell line. The antigen expression by individual cells in situ within clones was analyzed on frozen sections from colonies using the same panel of MAb and a biotin-avidin immunoperoxidase method. The results confirmed the marked heterogeneity of antigen expression within and among colonies, as indicated by the FMF analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monocytes/macrophages are important targets for dengue virus (DENV) replication; they induce inflammatory mediators and are sources of viral dissemination in the initial phase of the disease. Apoptosis is an active process of cellular destruction genetically regulated, in which a complex enzymatic pathway is activated and may be trigged by many viral infections. Since the mechanisms of apoptotic induction in DENV-infected target cells are not yet defined, we investigated the virus-cell interaction using a model of primary human monocyte infection with DENV-2 with the aim of identifying apoptotic markers. Cultures analyzed by flow cytometry and confocal microscopy yielded DENV antigen positive cells with rates that peaked at the second day post infection (p.i.), decayed afterwards and produced the apoptosis-related cytokines TNF-α and IL-10. Phosphatidylserine, an early marker for apoptosis, was increased at the cell surface and the Fas death receptor was upregulated at the second day p.i. at significantly higher rates in DENV infected cell cultures than controls. However, no detectable changes were observed in the expression of the anti-apoptotic protein Bcl-2 in infected cultures. Our data support virus modulation of extrinsic apoptotic factors in the in vitro model of human monocyte DENV-2 infection. DENV may be interfering in activation and death mechanisms by inducing apoptosis in target cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fas ligand (FasL) exerts potent proapoptotic and proinflammatory actions on epidermal keratinocytes and has been implicated in the pathogenesis of eczema, toxic epidermal necrolysis, and drug-induced skin eruptions. We used reconstructed human epidermis to investigate the mechanisms of FasL-induced inflammatory responses and their relationships with FasL-triggered caspase activity. Caspase activity was a potent antagonist of the pro-inflammatory gene expression triggered by FasL prior to the onset of cell death. Furthermore, we found that FasL-stimulated autocrine production of epidermal growth factor receptor (EGFR) ligands, and the subsequent activation of EGFR and ERK1 and ERK2 mitogen-activated protein kinases, were obligatory extracellular steps for the FasL-induced expression of a subset of inflammatory mediators, including CXCL8/interleukin (IL)-8, ICAM-1, IL-1alpha, IL-1beta, CCL20/MIP-3alpha, and thymic stromal lymphopoietin. These results expand the known physiological role of EGFR and its ligands from promoting keratinocyte mitogenesis and survival to mediating FasL-induced epidermal inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To analyze the expression of peroxisome proliferator-activated receptor-γ1 and 2 (PPARγ1 and 2), 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1), and leptin in adipose tissue (AT) of obese women during weight loss following Roux-en-Y gastric bypass (RYGB) and to compare these levels with those obtained in AT of nonobese subjects. Methods: Gene expression was determined by real-time RT-PCR prior to surgery and at 3, 6, and 12 months after RYGB. Results: All obese patients lost weight, reaching a mean BMI of 29.3 ± 1.0 kg/m(2) at 1 year after surgery (-33.9 ± 1.5% of their initial body weight). In obese subjects leptin and 11βHSD1 were over-expressed, whereas PPARγ1 was expressed at lower levels compared to controls. After surgery, leptin and 11βHSD1 gene expression decreased, whereas PPARγ1 expression increased. At 12 months after RYGB, these 3 genes had reached levels similar to the controls. In contrast, PPARγ2 gene expression was not different between groups and types of tissue and remained unchanged during weight loss. We found a positive correlation between BMI and levels of gene expression of leptin and 11βHSD1. Conclusion: Gene expression of leptin, PPARγ1, and 11βHSD1 in AT is modified in human obesity. This default is completely corrected by RYGB. Copyright © 2012 S. Karger GmbH, Freiburg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of an antigen-specific T-lymphocyte response is a complex multi-step process. Upon T-cell receptor-mediated recognition of antigen presented by activated dendritic cells, naive T-lymphocytes enter a program of proliferation and differentiation, during the course of which they acquire effector functions and may ultimately become memory T-cells. A major goal of modern immunology is to precisely identify and characterize effector and memory T-cell subpopulations that may be most efficient in disease protection. Sensitive methods are required to address these questions in exceedingly low numbers of antigen-specific lymphocytes recovered from clinical samples, and not manipulated in vitro. We have developed new techniques to dissect immune responses against viral or tumor antigens. These allow the isolation of various subsets of antigen-specific T-cells (with major histocompatibility complex [MHC]-peptide multimers and five-color FACS sorting) and the monitoring of gene expression in individual cells (by five-cell reverse transcription-polymerase chain reaction [RT-PCR]). We can also follow their proliferative life history by flow-fluorescence in situ hybridization (FISH) analysis of average telomere length. Recently, using these tools, we have identified subpopulations of CD8+ T-lymphocytes with distinct proliferative history and partial effector-like properties. Our data suggest that these subsets descend from recently activated T-cells and are committed to become differentiated effector T-lymphocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the authors review the literature and share their experience of the principal biological markers of fibrosis for the evaluation of periportal fibrosis (PPF) caused by mansoni schistosomiasis. These biological markers are compared to diagnostic ultrasound (US) scans as means of grading PPF. We also review procollagen type I and III, collagen type IV, laminin, hyaluronic acid (HA), immunoglobulin G, platelets, aspartate aminotransferase to platelet ratio index (APRI) and gamma-glutamyl transpeptidase as markers of the disease. Although there are several good markers for evaluating PPF and portal hypertension, such as HA, platelets or APRI, none can yet replace US. These markers may, however, be used to identify patients at greater risk of developing advanced disease in endemic areas and determine who will need further care and US studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BTLA (B- and T-lymphocyte attenuator) is a prominent co-receptor that is structurally and functionally related to CTLA-4 and PD-1. In T cells, BTLA inhibits TCR-mediated activation. In B cells, roles and functions of BTLA are still poorly understood and have never been studied in the context of B cells activated by CpG via TLR9. In this study, we evaluated the expression of BTLA depending on activation and differentiation of human B cell subsets in peripheral blood and lymph nodes. Stimulation with CpG upregulated BTLA, but not its ligand: herpes virus entry mediator (HVEM), on B cells in vitro and sustained its expression in vivo in melanoma patients after vaccination. Upon ligation with HVEM, BTLA inhibited CpG-mediated B cell functions (proliferation, cytokine production, and upregulation of co-stimulatory molecules), which was reversed by blocking BTLA/HVEM interactions. Interestingly, chemokine secretion (IL-8 and MIP1β) was not affected by BTLA/HVEM ligation, suggesting that BTLA-mediated inhibition is selective for some but not all B cell functions. We conclude that BTLA is an important immune checkpoint for B cells, as similarly known for T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NFAT (nuclear factors of activated T cells) proteins constitute a family of transcription factors involved in mediating signal transduction. The presence of NFAT isoforms has been described in all cell types of the immune system, with the exception of neutrophils. In the present work we report for the first time the expression in human neutrophils of NFAT2 mRNA and protein. We also report that specific antigens were able to promote NFAT2 protein translocation to the nucleus, an effect that was mimicked by the treatment of neutrophils with anti-immunoglobulin E (anti-IgE) or anti-Fcepsilon-receptor antibodies. Antigens, anti-IgE and anti-FcepsilonRs also increased Ca2+ release and the intracellular activity of calcineurin, which was able to interact physically with NFAT2, in parallel to eliciting an enhanced NFAT2 DNA-binding activity. In addition, specific chemical inhibitors of the NFAT pathway, such as cyclosporin A and VIVIT peptide, abolished antigen and anti-IgE-induced cyclooxygenase-2 (COX2) gene upregulation and prostaglandin (PGE(2)) release, suggesting that this process is through NFAT. Our results provide evidence that NFAT2 is constitutively expressed in human neutrophils, and after IgE-dependent activation operates as a transcription factor in the modulation of genes, such as COX2, during allergic inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Les télomères sont les structures ADN-protéines des extrémités des chromosomes des eucaryotes. L'ADN télomérique est constitué de courtes séquences répétitives. L'intégrité des télomères est essentielle pour protéger les extrémités des chromosomes contre les systèmes de dégradations et pour les distinguer des cassures de l'ADN double brin. Parce que la machinerie de la réplication de l'ADN n'est pas capable de répliquer l'extrémité des chromosomes, les télomères raccourcissent au fur et à mesure des cycles de réplication. Dès que les télomères atteignent une longueur critique, leur structure protectrice est perdue. Cela induit un signal de dommage de l'ADN et l'arrêt du cycle cellulaire. Pour contrebalancer le raccourcissement des télomères, les cellules qui s'auto régénèrent, dont les cellules de la moelle osseuse, les lymphocytes activés et 80-90% des cellules cancéreuses, expriment la télomérase. C'est une ribonucléoprotéine qui a la capacité de synthétiser des séquences télomériques par transcription inverse d'une courte séquence contenue dans sa propre sous-unité ARN avec laquelle elle est associée. La télomérase humaine est une enzyme processive au niveau de l'addition des nucléotides et aussi des répétitions télomériques. La télomérase de levure et la télomérase humaine sont toutes deux dimériques et il a été montré que la télomérase humaine recombinante contient deux ARN qui coopèrent pour fonctionner ainsi que deux sous-unités catalytiques. Cependant, il n'a pas encore été montré quel est le rôle de la dimérisation dans l'activité de la télomérase. Afin d'élucider ce rôle, nous avons exprimé, reconstitué et purifié la télomérase humaine dimérique recombinante. Et pour étudier l'effet d'ARN mutants sur l'activité de la télomérase, nous avons développé une méthode pour reconstituer et enrichir en hétérodimères de télomérase. Les hétérodimères contiennent une sous-unité ARN sauvage et une sous-unité ARN mutée au niveau de la séquence de la matrice. Sur l'ARN muté nous avons introduit une étiquette aptamer ARN-S1 puis nous avons purifié la télomérase via l'etiquette Si. Nous avons montré que la dimérisation est essentielle pour l'activité de la télomérase. Nos données indiquent que chaque télomérase du dimère allonge leur substrat, l'ADN télomérique, indépendamment l'une de l'autre à chaque cycle d'élongation mais que l'addition itérative de répétitions télomériques nécessite une coopération entre les deux télomérases du dimère. Nous proposons donc un modèle dans lequel les deux télomérases du dimères se lient et allongent deux substrats télomères et que pendant l'élongation processive les deux enzymes subissent un changement de conformation de manière coordonnée, ce changement va permettre le repositionnement des substrats pour d'autres cycles d'additions de répétitions télomériques. Dyskeratosis congenita est une maladie mortelle due majoritairement au disfonctionnement de la moelle osseuse. Dans la forme autosomale de la maladie, l'ARN de la télomérase contient des mutations. En utilisant notre système de reconstitution, nous avons montré que ces ARN mutés, qui ont perdu leur activité enzymatique dans le cas d'un homodimère de mutants, sont dominant négatifs quand ils sont présents dans les hétérodimères sauvage/mutant. Cet effet trans-dominant négatif pourrait contribuer à la progression de la maladie. Abstract Telomeres are protein-DNA structures at the ends of linear eukaryotic chromosomes. The telomeric DNA consists of tandemly repeated sequences. Telomeric integrity is essential to protect chromosomal ends from nucleolytic degradation and to prevent their recognition as DNA double strand breaks. Due to the inability of the conventional DNA replication machinery to replicate terminal DNA stretches, telomeres shorten with continuous rounds of DNA replication. As soon as telomeres reach a critical length, their protective structure is lost and the deprotected telomeres will induce a DNA damage response leading to cell cycle arrest. To counteract telomere shortening, self-renewing cells, including bone marrow cells, activated lymphocytes and 80-90% of cancer cells express the cellular reverse transcriptase telomerase, which has the capacity to synthesize telomeric repeats by reverse transcription of a short template sequence encoded by its stably associated RNA subunit. Human telomerase is a processive enzyme for nucleotide as well as repeat addition. Both yeast and human telomerase are dimeric enzymes and recombinant human telomerase has been shown to contain two functionally cooperating RNAs and most probably also two protein subunits. However, it has remained unclear how dimerization may contribute to telomerase activity. To study the role of dimerization, we expressed, reconstituted and purified recombinant human telomerase. We also developed a new method to reconstitute and enrich for telomerase heterodimers containing wild-type (wt) and mutant telomerase RNA subunits. To this end we introduced an S1-RNA-aptamer tag into telomerase RNA and purified telomerase reconstituted with a mixture of untagged and tagged RNA via the S1-tag. Using this experimental system, we introduced template mutations in the tagged RNA subunit and examined the effect of mutant RNAs on wt telomerase activity in wt/mutant heterodimers. We obtained evidence that dimerization is essential for telomerase activity. Our data indicate that the two subunits elongate telomere substrates independently of each other during single rounds of elongation, but that iterative addition of telomeric repeats requires cooperation between the two subunits. We suggest a model, in which dimeric telomerases bind and elongate two telomere substrates and that the two subunits undergo coordinated conformational changes during processive elongation that enable repositioning the substrates for subsequent rounds of repeat addition. Dyskeratosis congenita is a multisystemic disease with bone marrow failure as the major cause of death. The autosomal form of this disease was found to harbor mutations in the telomerase RNA. Using our reconstitution system, we tested whether mutant dyskeratosis telomerase RNAs behaved in a dominant negative manner. We observed that dyskeratosis telomerase RNA mutants, which lacked enzymatic activity were dominant negative, when present in wt/ mutant heterodimers. The transdominant negative effect of these mutants may contribute to disease progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors, PPARalpha, PPARbeta/delta and PPARgamma, are fatty acid activated transcription factors that belong to the nuclear hormone receptor family. While they are best known as transcriptional regulators of lipid and glucose metabolism, evidence has also accumulated for their importance in skin homeostasis. The three PPAR isotypes are expressed in rodent and human skin. Various cell culture and in vivo approaches suggest that PPARalpha contributes to fetal skin development, to epidermal barrier maturation and to sebocyte activity. PPARbeta/delta regulates sebocyte differentiation, promotes hair follicle growth and has pro-differentiating effects in keratinocytes in normal and inflammatory conditions. In contrast, the role of PPARgamma appears to be rather minor in keratinocytes, whereas its activity is required for sebaceous gland differentiation. Importantly, PPARalpha and beta/delta are instrumental in skin repair after an injury, each of them playing specific roles. Due to their collective diverse functions in skin biology, PPARs represent a major research target for the understanding and treatment of many skin diseases, such as benign epidermal tumors, papillomas, acne vulgaris and psoriasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endothelial dysfunction is a major component of the pathophysiology of septicaemic group B Streptococcus (GBS) infections. Although cytokines have been shown to activate human umbilical vein endothelial cells (HUVECs), the capacity of interferon (IFN)-γ to enhance the microbicidal activity of HUVECs against GBS has not been studied. We report that the viability of intracellular bacteria was reduced in HUVECs activated by IFN-γ. Enhanced fusion of lysosomes with bacteria-containing vacuoles was observed by acid phosphatase and the colocalisation of Rab-5, Rab-7 and lysosomal-associated membrane protein-1 with GBS in IFN-γ-activated HUVECs. IFN-γ resulted in an enhancement of the phagosome maturation process in HUVECs, improving the capacity to control the intracellular survival of GBS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymptomatic Plasmodium infection carriers represent a major threat to malaria control worldwide as they are silent natural reservoirs and do not seek medical care. There are no standard criteria for asymptomaticPlasmodium infection; therefore, its diagnosis relies on the presence of the parasite during a specific period of symptomless infection. The antiparasitic immune response can result in reducedPlasmodium sp. load with control of disease manifestations, which leads to asymptomatic infection. Both the innate and adaptive immune responses seem to play major roles in asymptomatic Plasmodiuminfection; T regulatory cell activity (through the production of interleukin-10 and transforming growth factor-β) and B-cells (with a broad antibody response) both play prominent roles. Furthermore, molecules involved in the haem detoxification pathway (such as haptoglobin and haeme oxygenase-1) and iron metabolism (ferritin and activated c-Jun N-terminal kinase) have emerged in recent years as potential biomarkers and thus are helping to unravel the immune response underlying asymptomatic Plasmodium infection. The acquisition of large data sets and the use of robust statistical tools, including network analysis, associated with well-designed malaria studies will likely help elucidate the immune mechanisms responsible for asymptomatic infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in fat tissue development and physiology. Mutations in the gene encoding this receptor have been associated to disorders in lipid metabolism. A thorough investigation of mice in which one PPARgamma allele has been mutated reveals that male PPARgamma heterozygous (PPARgamma +/-) mice exhibit a reduced body size associated with decreased body weight, reflecting lean mass reduction. This phenotype is reproduced when treating the mice with a PPARgamma- specific antagonist. Monosodium glutamate treatment, which induces weight gain and alters body growth in wild-type mice, further aggravates the growth defect of PPARgamma +/- mice. The levels of circulating GH and that of its downstream effector, IGF-I, are not altered in mutant mice. However, the IGF-I mRNA level is decreased in white adipose tissue (WAT) of PPARgamma +/- mice and is not changed by acute administration of recombinant human GH, suggesting an altered GH action in the mutant animals. Importantly, expression of the gene encoding the suppressor of cytokine signaling-2, which is an essential negative regulator of GH signaling, is strongly increased in the WAT of PPARgamma +/- mice. Although the relationship between the altered GH signaling in WAT and reduced body size remains unclear, our results suggest a novel role of PPARgamma in GH signaling, which might contribute to the metabolic disorder affecting insulin signaling in PPARgamma mutant mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monoclonal antibody (MAb) HL-C5, which bound selectively to cells of the myeloid lineage tested, was derived from a fusion between P3/NS2/1-AG8 myeloma cells and splenocytes from a mouse immunized with cells of the promyelocytic leukemia line HL-60. Among a panel of 29 human cell lines derived from either hematopoietic or solid tumors, MAb HL-C5 was found to react exclusively with cells from the five differentiated acute myeloid leukemia lines, HL-60, ML1, ML2, ML3, KG-1B and not with the less differentiated myeloid lines. Fluorescence-activated cell sorter analysis of normal bone marrow samples confirmed that the reactivity of MAb HL-C5 was limited to myeloid cells, from the promyelocytic stage of differentiation to the mature granulocytes. Indirect immunoperoxidase staining of cytocentrifuge preparations of normal bone marrow and peripheral blood leukocytes confirmed these results and showed that MAb HL-C5 stained neutrophils but not eosinophils or basophils. The antigen recognized by HL-C5 was recovered in the upper phase of chloroform-methanol-water lipid extracts prepared from HL-60 cells. By competitive binding experiments, it was found that MAb HL-C5 recognizes the same antigenic determinant as MAb WGHS 29-1, which has been reported to react with glycolipids containing the sugar sequence lacto-N-fucopentaose 111. Autoradiographs of thin layer chromatograms of HL-60 glycolipid extracts which were revealed by incubation with MAb HL-C5 or WGHS 29-1 followed by the addition of 125I-labelled rabbit anti-mouse immunoglobulin antibody confirmed that the two MAbs reacted with the same or structurally very similar glycolipids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Down-regulation of the initial burst of viremia during primary human immunodeficiency virus (HIV) infection is thought to be mediated predominantly by HIV-specific CD8+ cytotoxic T lymphocytes (CTL). This response is associated with major perturbations in the T cell receptor (TCR) repertoire. To investigate the failure of the cellular immune response to adequately control viral spread and replication and to prevent establishment of HIV infection, changes in the TCR repertoire and in the distribution of virus-specific CTL between blood and lymph node were analyzed in three patients with primary infection. By the combined use of clonotype-specific polymerase chain reaction and analysis of the frequency of in vivo activated HIV-specific CTL, it was shown that HIV-specific CTL clones preferentially accumulated in blood as opposed to lymph node. Accumulation of HIV-specific CTL in blood occurred prior to effective down-regulation of virus replication in both blood and lymph node. These findings should provide new insights into how HIV, and possibly other viruses, elude the immune response of the host during primary infection.