359 resultados para Accessions
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
This study aimed to evaluate the genetic diversity and relatedness of 24 accessions of Theobroma grandiflorum, originating from three units of Embrapa, aiming their use as parents in hybridization specie programs. The genetic markers used were heterologous microsatellite loci developed for cocoa. In the population studied 45 alleles were found. The effective average number of alleles per locus (2.33) was less than the average number of alleles per locus (3.21), indicating that many alleles have low frequency. The observed heterozygosity at polymorphic loci ranged from 0.33 to 1.00 with a mean of 0.54 and expected heterozygosity ranged from 0.48 to 0.76 with a mean of 0.54. The fixation index medium between loci (0.003) was not significantly different from zero. The estimate of relatedness between pairs of individuals indicates that some may be relatives, including half-brothers and clones. The results suggest that the accesses of T. grandiflorum analyzed contain a moderate level of genetic diversity and absence of inbreeding and therefore great potential for use in breeding programs.
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Pós-graduação em História - FCHS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Sweet sorghum, a botanical variety of sorghum is a potential source of bioenergy because high sugar levels accumulate in its stalks. The objectives of this study were to explore the global diversity of sweet sorghum germplasm, and map the genomic regions that are associated with bioenergy traits. In assessing diversity, 142 sweet sorghum accessions were evaluated with three marker types (SSR, SRAP, and morphological markers) to determine the degree of relatedness among the accessions. The traits measured (anthesis date [AD], plant height [PH], biomass yield [BY], and moisture content [MC]) were all significantly different (P<0.05) among accessions. Morphological marker clustered the accessions into five groups based on PH, MC and AD. The three traits accounted for 92.5% of the variation. There were four and five groups based on SRAP and SSR data respectively classifying accessions mainly on their origin or breeding history. The observed difference between SSR and SRAP based clusters could be attributed to the difference in marker type. SSRs amplify any region of the genome whereas SRAP amplify the open reading frames and promoter regions. Comparing the three marker-type clusters, the markers complimented each other in grouping accessions and would be valuable in assisting breeders to select appropriate lines for crossing. In evaluating QTLs that are associated with bioenergy traits, 165 recombinant inbred lines (RILs) were planted at four environments in Nebraska. A genetic linkage map constructed spanned a length of 1541.3 cM, and generated 18 linkage groups that aligned to the 10 sorghum chromosomes. Fourteen QTLs (6 for brix, 3 for BY, 2 each for AD and MC, and 1 for PH) were mapped. QTLs for the traits that were significantly correlated, colocalized in two clusters on linkage group Sbi01b. Both parents contributed beneficial alleles for most of traits measured, supporting the transgressive segregation in this population. Additional work is needed on exploiting the usefulness of chromosome 1 in breeding sorghum for bioenergy.
Resumo:
The circumscription of genera belonging to tribe Bignonieae (Bignoniaceae) has traditionally been complex, with only a few genera having stable circumscriptions in the various classification systems proposed for the tribe. The genus Lundia, for instance, is well characterized by a series of morphological synapomorphies and its circumscription has remained quite stable throughout its history. Despite the stable circumscription of Lundia, the circumscription of species within the genus has remained problematic. This study aims to reconstruct the phylogeny of Lundia in order to refine species circumscriptions, gain a better understanding of relationships between taxa, and identify potential morphological synapomorphies for species and major clades. We sampled 26 accessions representing 13 species of Lundia, and 5 outgroups, and reconstructed the phylogeny of the genus using a chloroplast (ndhF) and a nuclear marker (PepC). Data derived from sequences of the individual loci were analyzed using parsimony and Bayesian inference, and the combined molecular dataset was analyzed with Bayesian methods. The monophyly of Lundia nitidula, a species with a particularly complex circumscription, was tested using Shimodaira-Hasegawa (SH) test and the approximately unbiased test for phylogenetic tree selection (AU test). In addition, 40 morphological characters were mapped onto the tree that resulted from the analysis of the combined molecular dataset in order to identify morphological synapomorphies of individual species and major clades. Lundia and most species currently recognized within the genus were strongly supported as monophyletic in all analyses. One species, Lundia nitidula, was not resolved as monophyletic, but the monophyly of this species was not rejected by the AU and SH tests. Lundia sect. Eriolundia is resolved as paraphyletic in all analyses, while Lundia sect. Eulundia is monophyletic and supported by the same morphological characters traditionally used to circumscribe this section. The phylogeny of Lundia contributed important information for a better circumscription of species and served as basis the taxonomic revision of the genus.
Resumo:
Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13 degrees C for 28 days (cold stress) and 28 degrees C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.