811 resultados para Abalone culture -- Australia
Resumo:
Three new species of Tilletia are described from species of Eriachne (Poaceae) in the arid tropics of north-western Australia. In Western Australia, T. mactaggartii sp. nov. infects E. burkittii, and T. geeringii sp. nov. infects E. festucacea. Tilletia marjaniae sp. nov. infects E. pulchella subsp. dominii in Western Australia and the Northern Territory. These species are the first records of Tilletia on Eriachne. Phylogenetic relationships of these species were inferred from internal transcribed spacer of ribosomal RNA region and large subunit ribosomal RNA gene sequences.
Resumo:
This paper establishes reference ranges for hematologic and plasma biochemistry values in wild Black flying-foxes (Pteropus alecto) captured in South East Queensland, Australia. Values were found to be consistent with those of other Pteropus species. Four hundred and forty-seven animals were sampled over 12 months and significant differences were found between age, sex, reproductive and body condition cohorts in the sample population. Mean values for each cohort fell within the determined normal adult reference range, with the exception of elevated levels of alkaline phosphatase in juvenile animals. Hematologic and biochemistry parameters of injured animals showed little or no deviation from the normal reference values for minor injuries, while two animals with more severe injury or abscessation showed leucocytosis, anaemia, thrombocytosis, hyperglobulinemia and hypoalbuminemia.
Resumo:
Rapid screening tests and an appreciation of the simple genetic control of Alternaria brown spot (ABS) susceptibility have existed for many years, and yet the application of this knowledge to commercial-scale breeding programs has been limited. Detached leaf assays were first demonstrated more than 40 years ago and reliable data suggesting a single gene determining susceptibility has been emerging for at least 20 years. However it is only recently that the requirement for genetic resistance in new hybrids has become a priority, following increased disease prevalence in Australian mandarin production areas previously considered too dry for the pathogen. Almost all of the high-fruit-quality parents developed so far by the Queensland-based breeding program are susceptible to ABS necessitating the screening of their progeny to avoid commercialisation of susceptible hybrids. This is done effectively and efficiently by spraying 3-6 month old hybrid seedlings with a spore suspension derived from a toxin-producing field isolate of Alternaria alternate, then incubating these seedlings in a cool room at 25°C and high humidity for 5 days. Susceptible seedlings show clear disease symptoms and are discarded. Analysis of observed and expected segregation ratios loosely support the hypothesis for a single dominant gene for susceptibility, but do not rule out the possibility of alternative genetic models. After implementing the routine screening for ABS resistance for three seasons we now have more than 20,000 hybrids growing in field progeny blocks that have been screened for resistance to the ABS disease.
Resumo:
Molecular phylogenetic analysis, morphology and pathogenicity to citrus fruit were used to study two isolates of Elsinoe australis associated with scab-like symptoms on a fruit of Citrus australasica (finger lime) and Simmondsia chinensis (jojoba) in Australia. In addition to being associated with finger lime, the isolate from finger lime could cause scab symptoms on C. x aurantium cv. Murcott tangor in pathogenicity tests, but could not cause scab symptoms on the other orange, mandarin, lemon or grapefruit tested. Pathogenicity tests also support previous studies showing the isolate from jojoba could not produce symptoms on fruit of C. natsudaidai. Based on the findings of this study, two novel pathotypes of E. australis are designated from Australia; namely the Finger Lime (FL) pathotype associated with finger lime, and the Jojoba Black Scab (JBS) pathotype associated with black scab of jojoba. The significance of these novel E. australis pathotypes on market access and biosecurity issues for citrus are briefly discussed.
Resumo:
Novel species of Cercospora and Pseudocercospora are described from Australian native plant species. These taxa are Cercospora ischaemi sp. nov. on Ischaemum australe (Poaceae); Pseudocercospora airliensis sp. nov. on Polyalthia nitidissima (Annonaceae); Pseudocercospora proiphydis sp. nov. on Proiphys amboinensis (Amaryllidaceae); and Pseudocercospora jagerae sp. nov. on Jagera pseudorhus var. pseudorhus (Sapindaceae). These species were characterised by morphology and an analysis of partial nucleotide sequence data for the three gene loci, ITS, LSU and EF-1α. Recent divergence of closely related Australian species of Pseudocercospora on native plants is proposed.
Resumo:
Pythium soft rot (PSR) of ginger caused by a number of Pythium species is of the most concern worldwide. In Australia, PSR outbreaks associated with Pythium myriotylum was recorded in 2007. Our recent pathogenicity tests in Petri dishes conducted on ginger rhizomes and pot trials on ginger plants showed that Pythiogeton (Py.) ramosum, an uncommon studied oomycete in Pythiaceae, was also pathogenic to ginger at high temperature (30–35 °C). Ginger sticks excised from the rhizomes were colonised by Py. ramosum which caused soft rot and browning lesions. Ginger plants inoculated with Py. ramosum showed initial symptoms of wilting and leave yellowing, which were indistinguishable from those of Pythium soft rot of ginger, at 10 days after inoculation. In addition, morphological and phylogenetic studies indicated that isolates of Py. ramosum were quite variable and our isolates obtained from soft rot ginger were divided into two groups based on these variations. This is also for the first time Py. ramosum is reported as a pathogen on ginger at high temperatures.
Resumo:
Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here we consider how changes in climate and atmospheric carbon dioxide (CO2) concentrations will affect drought ET frequencies in sorghum and wheat systems of Northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat. This article is protected by copyright. All rights reserved.
Resumo:
Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here we consider how changes in climate and atmospheric carbon dioxide (CO2) concentrations will affect drought ET frequencies in sorghum and wheat systems of Northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat. This article is protected by copyright. All rights reserved.
Resumo:
Bactrocera frauenfeldi (Schiner), the ‘mango fruit fly’, is a horticultural pest originating from the Papua New Guinea region. It was first detected in Australia on Cape York Peninsula in north Queensland in 1974 and had spread to Cairns by 1994 and Townsville by 1997. Bactrocera frauenfeldi has not been recorded further south since then despite its invasive potential, an absence of any controls and an abundance of hosts in southern areas. Analysis of cue-lure trapping data from 1997 to 2012 in relation to environmental variables shows that the distribution of B. frauenfeldi in Queensland correlates to locations with a minimum temperature for the coldest month >13.2°C, annual temperature range <19.3°C, mean temperature of the driest quarter >20.2°C, precipitation of the wettest month >268 mm, precipitation of the wettest quarter >697 mm, temperature seasonality <30.9°C (i.e. lower temperature variability) and areas with higher human population per square kilometre. Annual temperature range was the most important variable in predicting this species' distribution. Predictive distribution maps based on an uncorrelated subset of these variables reasonably reflected the current distribution of this species in northern Australia and predicted other areas in the world potentially at risk from invasion by this species. This analysis shows that the distribution of B. frauenfeldi in Australia is correlated to certain environmental variables that have most likely limited this species' spread southward in Queensland. This is of importance to Australian horticulture in demonstrating that B. frauenfeldi is unlikely to establish in horticultural production areas further south than Townsville.
Resumo:
Background: The development of a horse vaccine against Hendra virus has been hailed as a good example of a One Health approach to the control of human disease. Although there is little doubt that this is true, it is clear from the underwhelming uptake of the vaccine by horse owners to date (approximately 10%) that realisation of a One Health approach requires more than just a scientific solution. As emerging infectious diseases may often be linked to the development and implementation of novel vaccines this presentation will discuss factors influencing their uptake; using Hendra virus in Australia as a case study. Methods: This presentation will draw on data collected from the Horse owners and Hendra virus: A Longitudinal cohort study To Evaluate Risk (HHALTER) study. The HHALTER study is a mixed methods research study comprising a two-year survey-based longitudinal cohort study and qualitative interview study with horse owners in Australia. The HHALTER study has investigated and tracked changes in a broad range of issues around early uptake of vaccination, horse owner uptake of other recommended disease risk mitigation strategies, and attitudes to government policy and disease response. Interviews provide further insights into attitudes towards risk and decision-making in relation to vaccine uptake. A combination of quantitative and qualitative data analysis will be reported. Results: Data collected from more than 1100 horse owners shortly after vaccine introduction indicated that vaccine uptake and intention to vaccinate was associated with a number of risk perception factors and financial cost factors. In addition, concerns about side effects and veterinarians refusing to treat unvaccinated horses were linked to uptake. Across the study period vaccine uptake in the study cohort increased to more than 50%, however, concerns around side effects, equine performance and breeding impacts, delays to full vaccine approvals, and attempts to mandate vaccination by horse associations and event organisers have all impacted acceptance. Conclusion: Despite being provided with a safe and effective vaccine for Hendra virus that can protect horses and break the transmission cycle of the virus to humans, Australian horse owners have been reluctant to commit to it. General issues pertinent to novel vaccines, combined with challenges in the implementation of the vaccine have led to issues of mistrust and misconception with some horse owners. Moreover, factors such as cost, booster dose schedules, complexities around perceived risk, and ulterior motives attributed to veterinarians have only served to polarise attitudes to vaccine acceptance.
Resumo:
With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.
Resumo:
Male fruit fly attractants, cue-lure and methyl eugenol (ME), have been successfully used for the last 50 years in the monitoring and control of Dacini fruit flies (Bactrocera and Dacus species). However, over 50% of Dacini are non-responsive to either lure, including some pest species. A new lure, zingerone, has been found to weakly attract cue- and ME-responsive species in Malaysia. In Australia it attracted a weakly cue-responsive minor pest Bactrocera jarvisi (Tryon) and three non-responsive' species. Similar compounds were tested in Queensland and attracted cue- and ME-responsive species and two non-responsive' species. In this study, 14 novel compounds, including raspberry ketone formate (RKF) (Melolure) and zingerone, were field tested in comparison with cue-lure and ME at 17 sites in north Queensland. The most attractive novel lures were isoeugenol, methyl-isoeugenol, dihydroeugenol and zingerone. Several non-responsive' species responded to the new lures: Bactrocera halfordiae (Tryon), a species of some market access concern, was most attracted to isoeugenol; B.barringtoniae (Tryon), B.bidentata (May) and B.murrayi (Perkins) responded to isoeugenol, methyl-isoeugenol and dihydroeugenol; two new species of Dacus responded to zingerone. Bactrocera kraussi (Hardy), a cue-responsive minor pest in north Queensland, was significantly more attracted to isoeugenol than cue-lure. The cue-responsive D.absonifacies (May) and D.secamoneaeDrew were significantly more attracted to zingerone than cue-lure. Bactrocera yorkensisDrew & Hancock, a ME-responsive species was significantly more attracted to isoeugenol, methyl-isoeugenol and dihydroeugenol than ME. The preferential response to RKF or cue-lure was species specific. Six species were significantly more attracted to RKF, including the pests B.tryoni (Froggatt), B.frauenfeldi (Schiner) and minor pest B.bryoniae (Tryon); eight species were significantly more attracted to cue-lure including the pest B.neohumeralis (Hardy). These findings have significance in the search for optimal male lures for pest species elsewhere in the world.
Resumo:
Knowledge of the resource requirements of urban predators can improve our understanding of their ecology and assist town planners and wildlife management agencies in developing management approaches that alleviate human-wildlife conflicts. Here we examine food and dietary items identified in scats of dingoes in peri-urban areas of north-eastern Australia to better understand their resource requirements and the potential for dingoes to threaten locally fragmented populations of native fauna. Our primary aim was to determine what peri-urban dingoes eat, and whether or not this differs between regions. We identified over 40 different food items in dingo scats, almost all of which were mammals. Individual species commonly observed in dingo scats included agile wallabies, northern brown bandicoots and swamp wallabies. Birds were relatively common in some areas but not others, as were invertebrates. Dingoes were identified as a significant potential threat to fragmented populations of koalas. Dietary overlap was typically very high or near-identical between regions, indicating that peri-urban dingoes ate the same types or sizes of prey in different areas. Future studies should seek to quantify actual and perceived impacts of, and human attitudes towards, peri-urban dingoes, and to develop management strategies with a greater chance of reducing human-wildlife conflicts.
Resumo:
Bats of the genus Pteropus (Pteropodidae) are recognised as the natural host of multiple emerging pathogenic viruses of animal and human health significance, including henipaviruses, lyssaviruses and ebolaviruses. Some studies have suggested that physiological and ecological factors may be associated with Hendra virus infection in flying-foxes in Australia; however, it is essential to understand the normal range and seasonal variability of physiological biomarkers before seeking physiological associations with infection status. We aimed to measure a suite of physiological biomarkers in P. alecto over time to identify any seasonal fluctuations and to examine possible associations with life-cycle and environmental stressors. We sampled 839 adult P. alecto in the Australian state of Queensland over a 12-month period. The adjusted population means of every assessed hematologic and biochemical parameter were within the reported reference range on every sampling occasion. However, within this range, we identified significant temporal variation in these parameters, in urinary parameters and body condition, which primarily reflected the normal annual life cycle. We found no evident effect of remarkable physiological demands or nutritional stress, and no indication of clinical disease driving any parameter values outside the normal species reference range. Our findings identify underlying temporal physiological changes at the population level that inform epidemiological studies and assessment of putative physiological risk factors driving Hendra virus infection in P. alecto. More broadly, the findings add to the knowledge of Pteropus populations in terms of their relative resistance and resilience to emerging infectious disease.