938 resultados para Ab-initio molecular dynamics
Resumo:
The vitrification and devitrification features of lead fluoride are investigated by means of molecular dynamic simulations. The influence of heating rate on the devitrification temperature as well as the dependence of the glass properties on its thermal history, i.e., the cooling rate employed, is identified. As expected, different glasses are obtained when the cooling rates differ. Diffusion coefficient analysis during heating of glass and crystal, indicates that the presence of defects on the glassy matrix favors the transition processes from the ionic to a superionic state, with high mobility of fluorine atoms, responsible for the high anionic conduction of lead fluoride. Nonisothermal and isothermal devitrification processes are simulated in glasses obtained at different cooling rates and structural organizations occurring during the heat treatments are clearly observed. When a fast cooling rate is employed during the glass formation, the devitrification of a single crystal (limited by the cell dimensions) is observed, while the glass obtained with slower cooling rate, allowing relaxations and organization of various regions on the glass bulk during the cooling process, devitrifies in more than one crystalline plane. (C) 2004 American Institute of Physics.
Resumo:
In this work molecular dynamics simulations were performed to reproduce the kinetic and thermodynamic transformations occurring during melt crystallization, vitrification, and glass crystallization (devitrification) of PbF2. Two potential parameters were analyzed in order to access the possibility of modeling these properties. These interionic potentials are models developed to describe specific characteristic of PbF2, and thermodynamic properties were well reproduced by one of them, while the other proved well adapted to simulate the crystalline structure of this fluoride. By a modeled nonisothermal heat treatment of the glass, it was shown that the devitrification of a cubic structure in which the Pb-Pb distances are in good agreement with theory and experiment. (C) 2002 American Institute of Physics.
Resumo:
This article reports a theoretical study based on experimental results for barium zirconate, BaZrO3 (BZ) thin films, using periodic mechanic quantum calculations to analyze the symmetry change in a structural order-disorder simulation. Four periodic models were simulated using CRYSTAL98 code to represent the ordered and disordered BZ structures. The results were analyzed in terms of the energy level diagrams and atomic orbital distributions to explain and understand the BZ photoluminescence properties (PL) at room temperature for the disordered structure based on structural deformation and symmetry changes. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 111: 694-701, 2011
Resumo:
A series of Molecular Dynamics simulations of thermal spikes has been run in zircon. For two different ensembles: microcanonical one and a combination of microcanonical one acting on the simulation core with Langevin one on the side walls of simulation. Depending on the used ensemble, different track-formation threshold energies were found. When the combined ensemble is carried out, the total energy of the simulations varies with the temperature which can influence how annealing fission-track models should deal with the lattice recovery. A fission-track annealing model is tested with the simulation results. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Unzipping carbon nanotubes (CNTs) is considered one of the most promising approaches for the controlled and large-scale production of graphene nanoribbons (GNR). These structures are considered of great importance for the development of nanoelectronics because of its dimensions and intrinsic nonzero band gap value. Despite many years of investigations some details on the dynamics of the CNT fracture/unzipping processes remain unclear. In this work we have investigated some of these process through molecular dynamics simulations using reactive force fields (ReaxFF), as implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. We considered multi-walled CNTs of different dimensions and chiralities and under induced mechanical stretching. Our preliminary results show that the unzipping mechanisms are highly dependent on CNT chirality. Well-defined and distinct fracture patterns were observed for the different chiralities. Armchair CNTs favor the creation of GNRs with well-defined armchair edges, while zigzag and chiral ones produce GNRs with less defined and defective edges. © 2012 Materials Research Society.
Resumo:
Carbon nanoscrolls (graphene layers rolled up into papyrus-like tubular structures) are nanostructures with unique and interesting characteristics that could be exploited to build several new nanodevices. However, an efficient and controlled synthesis of these structures was not achieved yet, making its large scale production a challenge to materials scientists. Also, the formation process and detailed mechanisms that occur during its synthesis are not completely known. In this work, using fully atomistic molecular dynamics simulations, we discuss a possible route to nanoscrolls made from graphene layers deposited over silicon oxide substrates containing chambers/pits. The scrolling mechanism is triggered by carbon nanotubes deposited on the layers. The process is completely general and can be used to produce scrolls from other lamellar materials, like boron nitride, for instance. © 2013 American Institute of Physics.
Resumo:
Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Resultados obtidos por cálculos Dirac-Fock correlacionados de 4 componentes para o fluoreto do elemento E119 (Eka-Frâncio) com base estável e precisa, livre de prolapso variacional, são reportados neste trabalho. No nível CCSD(T), a distância de equilíbrio Re, frequência harmônica ωe e energia de dissociação De são 2,432 Å, 354,97 cm-1 e 116,92 kcal mol-1, respectivamente. Também são reportados base livre de prolapso variacional de 4 componentes para o elemento 119, uma curva analítica de energia potencial precisa e o espectro vibracional a partir dos dados obtidos no nível CCSD(T). Nossos resultados sugerem que a molécula E119F deva ser menos iônica que seus fluoretos alcalinos homólogos mais leves, em contraste com o senso químico comum baseado nas propriedades periódicas - era de se esperar nesta molécula a ligação química mais iônica possível. Também encontramos que a correção do tipo modelo de carga para negligenciar as integrais do tipo SS resulta em erros insignificantes e acelera os cálculos cerca de 3 vezes no nível CCSD(T) e cerca de 4 vezes no nível DFT/B3LYP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using an effective two-body interaction potential, a molecular dynamics study of the structural properties of amorphous ZrF4 phase is presented. The effective pair potential includes steric repulsion, Coulomb interaction due to charge transfer, and charge-dipole interaction due to the large electronic polarizability of anions. The results for structural correlations, such as pair distribution functions, coordination numbers, and bond angle distributions are presented. Excellent agreement is obtained by comparing experimental X-ray diffraction and the simulated static X-ray structure factor. © 1993.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The elastic properties of a Ti3Al intermetallic compound were studied using full potential (FP LAPW ) with the APW+lo method. The FP-LAPW is among the most accurate band structure calculations currently available and is based on the density functional theory with general gradient approximation for the exchange and correlation potential. This method provides the structural properties of the ground state as bulk modulus, equilibrium lattice parameter, and equilibrium minimum energy, and the elastic properties as shear modulus, young modulus, Zener coefficient (anisotropy), and Poisson coefficient. The calculated elastic properties are coherent with the elastic properties of the material.
Resumo:
We review the previous literature and our recent work on first-principles studies of Cu3Au(100) and (111) surfaces, with focus on the segregation of atomic species to the surface at pristine conditions and in the presence of oxygen. In particular, the combined use of experimental and theoretical tools to achieve chemical identification at an atomic level of the surface species is emphasized and discussed.
Resumo:
Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases involved in the extracellular matrix degradation. MMP-2 and MMP9 are overexpressed in several human cancer types, including melanoma, thus the development of new compounds to inhibit MMPs' activity is desirable. Molecular dynamic simulation and molecular properties calculations were performed on a set of novel beta-N-biaryl ether sulfonamide-based hydroxamates, reported as MMP-2 and MMP-9 inhibitors, for providing data to develop an exploratory analysis. Thermodynamic, electronic, and steric descriptors have significantly discriminated highly active from moderately and less active inhibitors of MMP-2 whereas apparent partition coefficient at pH 1.5 was also significant for the MMP-9 data set. Compound 47 was considered an outlier in all analysis, indicating the presence of a bulky substituent group in R3 is crucial to this set of inhibitors for the establishment of molecular interactions with the S1 subsite of both enzymes, but there is a limit. (C) 2012 Wiley Periodicals, Inc.
Resumo:
We performed an ab initio investigation on the properties of rutile tin oxide (SnOx) nanowires. We computed the wire properties determining the equilibrium geometries, binding energies, and electronic band structures for several wire dimensions and surface facet configurations. The results allowed us to establish scaling laws for the structural properties, in terms of the nanowire perimeters. The results also showed that the surface states control most of the electronic properties of the nanowires. Oxygen incorporation in the nanowire surfaces passivated the surface-related electronic states, and the resulting quantum properties and scaling laws were fully consistent with electrons confined inside the nanowire. Additionally, oxygen incorporation in the wire surfaces generated an unbalanced concentration of spin up and down electrons, leading to magnetic states for the nanowires.