381 resultados para ATR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper evaluates the photopolymerization kinetics and degree of conversion of different commercial dental composites when photoactivated by a LED curing unit using two different modes (standard and soft-start mode). The investigation was performed on with RelyX ARC (dual-cured), Filtek Z-350 (Nanocomposite), Filtek Z-250 (Hybrid), and Filtek Z-350flow (Flowable) resin composites. The analysis used was attenuated total reflection with a Fourier transform infrared (ATR-FTIR). The RelyX ARC resin demonstrated the highest degree of conversion with both LED photoactivation modes. For this resin a 28% decrease in maximum rate was observed and the time to reach its highest rate was almost 2.3 times higher than when the soft-start photoactivation light curing was used. Z-350flow resin recorder a higher maximum rate using the soft-start mode rather than the standard mode. In contrast, the Z-250 showed a higher value using the standard mode. Although Z-250 and Z-350 showed a higher total degree of conversion effectiveness using the soft-start mode, RelyX and Z-350flow achieved a higher value using the standard mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to evaluate the chemical interaction of collagen with some substances usually applied in dental treatments to increase the durability of adhesive restorations to dentin. Initially, the similarity between human dentin collagen and type I collagen obtained from commercial bovine membranes of Achilles deep tendon was compared by the Attenuated Total Reflectance technique of Fourier Transform Infrared (ATR-FTIR) spectroscopy. Finally, the effects of application of 35% phosphoric acid, 0.1M ethylenediaminetetraacetic acid (EDTA), 2% chlorhexidine, and 6.5% proanthocyanidin solution on microstructure of collagen and in the integrity of its triple helix were also evaluated by ATR-FTIR. It was observed that the commercial type I collagen can be used as an efficient substitute for demineralized human dentin in studies that use spectroscopy analysis. The 35% phosphoric acid significantly altered the organic content of amides, proline and hydroxyproline of type I collagen. The surface treatment with 0.1M EDTA, 2% chlorhexidine, or 6.5% proanthocyanidin did not promote deleterious structural changes to the collagen triple helix. The application of 6.5% proanthocyanidin on collagen promoted hydrogen bond formation. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 +/- 0.3) x 10(14) molecules cm(-2) in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research in art conservation has been developed from the early 1950s, giving a significant contribution to the conservation-restoration of cultural heritage artefacts. In fact, only through a profound knowledge about the nature and conditions of constituent materials, suitable decisions on the conservation and restoration measures can thus be adopted and preservation practices enhanced. The study of ancient artworks is particularly challenging as they can be considered as heterogeneous and multilayered systems where numerous interactions between the different components as well as degradation and ageing phenomena take place. However, difficulties to physically separate the different layers due to their thickness (1-200 µm) can result in the inaccurate attribution of the identified compounds to a specific layer. Therefore, details can only be analysed when the sample preparation method leaves the layer structure intact, as for example the preparation of embedding cross sections in synthetic resins. Hence, spatially resolved analytical techniques are required not only to exactly characterize the nature of the compounds but also to obtain precise chemical and physical information about ongoing changes. This thesis focuses on the application of FTIR microspectroscopic techniques for cultural heritage materials. The first section is aimed at introducing the use of FTIR microscopy in conservation science with a particular attention to the sampling criteria and sample preparation methods. The second section is aimed at evaluating and validating the use of different FTIR microscopic analytical methods applied to the study of different art conservation issues which may be encountered dealing with cultural heritage artefacts: the characterisation of the artistic execution technique (chapter II-1), the studies on degradation phenomena (chapter II-2) and finally the evaluation of protective treatments (chapter II-3). The third and last section is divided into three chapters which underline recent developments in FTIR spectroscopy for the characterisation of paint cross sections and in particular thin organic layers: a newly developed preparation method with embedding systems in infrared transparent salts (chapter III-1), the new opportunities offered by macro-ATR imaging spectroscopy (chapter III-2) and the possibilities achieved with the different FTIR microspectroscopic techniques nowadays available (chapter III-3). In chapter II-1, FTIR microspectroscopy as molecular analysis, is presented in an integrated approach with other analytical techniques. The proposed sequence is optimized in function of the limited quantity of sample available and this methodology permits to identify the painting materials and characterise the adopted execution technique and state of conservation. Chapter II-2 describes the characterisation of the degradation products with FTIR microscopy since the investigation on the ageing processes encountered in old artefacts represents one of the most important issues in conservation research. Metal carboxylates resulting from the interaction between pigments and binding media are characterized using synthesised metal palmitates and their production is detected on copper-, zinc-, manganese- and lead- (associated with lead carbonate) based pigments dispersed either in oil or egg tempera. Moreover, significant effects seem to be obtained with iron and cobalt (acceleration of the triglycerides hydrolysis). For the first time on sienna and umber paints, manganese carboxylates are also observed. Finally in chapter II-3, FTIR microscopy is combined with further elemental analyses to characterise and estimate the performances and stability of newly developed treatments, which should better fit conservation-restoration problems. In the second part, in chapter III-1, an innovative embedding system in potassium bromide is reported focusing on the characterisation and localisation of organic substances in cross sections. Not only the identification but also the distribution of proteinaceous, lipidic or resinaceous materials, are evidenced directly on different paint cross sections, especially in thin layers of the order of 10 µm. Chapter III-2 describes the use of a conventional diamond ATR accessory coupled with a focal plane array to obtain chemical images of multi-layered paint cross sections. A rapid and simple identification of the different compounds is achieved without the use of any infrared microscope objectives. Finally, the latest FTIR techniques available are highlighted in chapter III-3 in a comparative study for the characterisation of paint cross sections. Results in terms of spatial resolution, data quality and chemical information obtained are presented and in particular, a new FTIR microscope equipped with a linear array detector, which permits reducing the spatial resolution limit to approximately 5 µm, provides very promising results and may represent a good alternative to either mapping or imaging systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of mass transport in polymeric membranes has grown in importance due to its potential application in many processes such as separation of gases and vapors, packaging, controlled drug release. The diffusion of a low molecular weight species in a polymer is often accompanied by other phenomena like swelling, reactions, stresses, that have not been investigated in all their aspects yet. Furthermore, novel materials have been developed that include inorganic fillers, reactive functional groups or ions, that make the scenery even more complicated. The present work focused on the experimental study of systems where the diffusion is accompanied by other processes; suitable models were also developed to describe the particular circumstances in order to understand the underlying concepts and be able to design the performances of the material. The effect of solvent-induced deformation in polymeric films during sorption processes was studied since the dilation, especially in constrained membranes, can cause the development of stresses and therefore early failures of the material. The bending beam technique was used to test the effects of the dilation and the stress induced in the polymer by penetrant diffusion. A model based on the laminate theory was developed that accounts for the swelling and is able to predict the stress that raise in the material. The addition of inorganic fillers affects the transport properties of polymeric films. Mixed matrix membranes based on fluorinated, high free volume matrices show attractive performances for separation purposes but there is a need for deeper investigation of the selectivity properties towards gases and vapors. A new procedure based on the NELF model was tested on the experimental data; it allows to predict solubility of every penetrant on the basis of data for one vapor. The method has proved to be useful also for the determination of the diffusion coefficient and for an estimation of the permeability in the composite materials. Oxygen scavenging systems can overcome lack of barrier properties in common polymers that forbids their application in sensitive applications as food packaging. The final goal of obtaining a membrane almost impermeable to oxygen leads to experimental times out of reach. Hence, a simple model was developed in order to describe the transport of oxygen in a membrane with also reactive groups and analyze the experimental data collected on SBS copolymers that show attractive scavenging capacity. Furthermore, a model for predicting the oxygen barrier behavior of a film formed as a blend of OSP in a common packaging material was built, considering particles capable of reactions with oxygen embedded in a non-reactive matrix. Perfluorosulphonic acid ionomers (PFSI) are capturing attention due to a high thermal and chemical resistance coupled with very peculiar transport properties, that make them appropriate to be used in fuel cells. The possible effect of different formation procedure was studied together with the swelling due to water sorption since both water uptake and dilation can dramatically affect the fuel cells performances. The water diffusion and sorption was studied with a FTIR-ATR spectrometer that can give deeper information on the bonds between water molecules and the sulphonic hydrophilic groups and, therefore, on the microstructure of the hydrated ionomer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interactions between outdoor bronzes and the environment, which lead to bronze corrosion, require a better understanding in order to design effective conservation strategies in the Cultural Heritage field. In the present work, investigations on real patinas of the outdoor monument to Vittorio Bottego (Parma, Italy) and laboratory studies on accelerated corrosion testing of inhibited (by silane-based films, with and without ceria nanoparticles) and non-inhibited quaternary bronzes are reported and discussed. In particular, a wet&dry ageing method was used both for testing the efficiency of the inhibitor and for patinating bronze coupons before applying the inhibitor. A wide range of spectroscopic techniques has been used, for characterizing the core metal (SEM+EDS, XRF, AAS), the corroded surfaces (SEM+EDS, portable XRF, micro-Raman, ATR-IR, Py-GC-MS) and the ageing solutions (AAS). The main conclusions were: 1. The investigations on the Bottego monument confirmed the differentiation of the corrosion products as a function of the exposure geometry, already observed in previous works, further highlighting the need to take into account the different surface features when selecting conservation procedures such as the application of inhibitors (i.e. the relative Sn enrichment in unsheltered areas requires inhibitors which effectively interact not only with Cu but also with Sn). 2. The ageing (pre-patination) cycle on coupons was able to reproduce the relative Sn enrichment that actually happens in real patinated surfaces, making the bronze specimens representative of the real support for bronze inhibitors. 3. The non-toxic silane-based inhibitors display a good protective efficiency towards pre-patinated surfaces, differently from other widely used inhibitors such as benzotriazole (BTA) and its derivatives. 4. The 3-mercapto-propyl-trimethoxy-silane (PropS-SH) additivated with CeO2 nanoparticles generally offered a better corrosion protection than PropS-SH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scope of my research project is to produce and characterize new crystalline forms of organic compounds, focusing the attention on co-crystals and then transferring these notions on APIs to produce co-crystals of potential interest in the pharmaceutical field. In the first part of this work co-crystallization experiments were performed using as building blocks the family of aliphatic dicarboxylic acids HOOC-(CH2)n-COOH, with n= 2-8. This class of compounds has always been an object of study because it is characterized by an interesting phenomenon of alternation of melting points: the acids with an even number of carbon atoms show a melting point higher than those with an odd one. The acids were co-crystallized with four dipyridyl molecules (formed by two pyridine rings with a different number of bridging carbon atoms) through the formation of intermolecular interactions N•••(H)O. The bases used were: 4,4’-bipyridine (BPY), 1,2-bis(4-pyridyl)ethane (BPA), 1,2-(di-4-pyridyl)ethylene (BPE) and 1,2-bis(4-pyridyl)propane (BPP). The co-crystals obtained by solution synthesis were characterized by different solid-state techniques to determine the structure and to see how the melting points in co-crystals change. In the second part of this study we tried to obtain new crystal forms of compounds of pharmaceutical interest. The APIs studied are: O-desmethylvenlafaxine, Lidocaine, Nalidixic Acid and Sulfadiazine. Each API was subjected to Polymorph Screening and Salt/Co-crystal Screening experiments to identify new crystal forms characterized by different properties. In a typical Salt/Co-crystal Screening the sample was made to react with a co-former (solid or liquid) through different methods: crystallization by solution, grinding, kneading and solid-gas reactions. The new crystal forms obtained were characterized by different solid state techniques (X-ray single crystal diffraction, X-ray powder diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Evolved gas analysis, FT-IR – ATR, Solid State N.M.R).