1000 resultados para ATOMIC QUANTUM FLUID
Resumo:
We investigate an optical scheme to conditionally engineer quantum states using a beam splitter, homodyne detection, and a squeezed vacuum as an ancillar state. This scheme is efficient in producing non-Gaussian quantum states such as squeezed single photons and superpositions of coherent states (SCSs). We show that a SCS with well defined parity and high fidelity can be generated from a Fock state of n
Resumo:
We show that the quantum decoherence of Forster resonant energy transfer between two optically active molecules can be described by a spin-boson model. This allows us to give quantitative criteria that are necessary for coherent quantum oscillations of excitations between the chromophores. Experimental tests of our results should be possible with flourescent resonant energy transfer (FRET) spectroscopy. Although we focus on the case of protein-pigment complexes our results are also relevant to quantum dots and organic molecules in a dielectric medium. (c) 2006 Elsevier B.V. All rights reserved.
Dual-symmetric Lagrangians in quantum electrodynamics: I. Conservation laws and multi-polar coupling
Resumo:
By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.
Resumo:
A system of cascaded qubits interacting via the one-way exchange of photons is studied. While for general operating conditions the system evolves to a superposition of Bell states (a dark state) in the long-time limit, under a particular resonance condition no steady state is reached within a finite time. We analyze the conditional quantum evolution (quantum trajectories) to characterize the asymptotic behavior under this resonance condition. A distinct bimodality is observed: for perfect qubit coupling, the system either evolves to a maximally entangled Bell state without emitting photons (the dark state) or executes a sustained entangled-state cycle-random switching between a pair of Bell states while emitting a continuous photon stream; for imperfect coupling, two entangled-state cycles coexist, between which a random selection is made from one quantum trajectory to another.
Resumo:
We investigate the quantum many-body dynamics of dissociation of a Bose-Einstein condensate of molecular dimers into pairs of constituent bosonic atoms and analyze the resulting atom-atom correlations. The quantum fields of both the molecules and atoms are simulated from first principles in three dimensions using the positive-P representation method. This allows us to provide an exact treatment of the molecular field depletion and s-wave scattering interactions between the particles, as well as to extend the analysis to nonuniform systems. In the simplest uniform case, we find that the major source of atom-atom decorrelation is atom-atom recombination which produces molecules outside the initially occupied condensate mode. The unwanted molecules are formed from dissociated atom pairs with nonopposite momenta. The net effect of this process-which becomes increasingly significant for dissociation durations corresponding to more than about 40% conversion-is to reduce the atom-atom correlations. In addition, for nonuniform systems we find that mode mixing due to inhomogeneity can result in further degradation of the correlation signal. We characterize the correlation strength via the degree of squeezing of particle number-difference fluctuations in a certain momentum-space volume and show that the correlation strength can be increased if the signals are binned into larger counting volumes.
Resumo:
We prove upper and lower bounds relating the quantum gate complexity of a unitary operation, U, to the optimal control cost associated to the synthesis of U. These bounds apply for any optimal control problem, and can be used to show that the quantum gate complexity is essentially equivalent to the optimal control cost for a wide range of problems, including time-optimal control and finding minimal distances on certain Riemannian, sub-Riemannian, and Finslerian manifolds. These results generalize the results of [Nielsen, Dowling, Gu, and Doherty, Science 311, 1133 (2006)], which showed that the gate complexity can be related to distances on a Riemannian manifold.
Resumo:
In this paper we do a detailed numerical investigation of the fault-tolerant threshold for optical cluster-state quantum computation. Our noise model allows both photon loss and depolarizing noise, as a general proxy for all types of local noise other than photon loss noise. We obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible in the combined presence of both noise types, provided that the loss probability is less than 3 X 10(-3) and the depolarization probability is less than 10(-4). Our fault-tolerant protocol involves a number of innovations, including a method for syndrome extraction known as telecorrection, whereby repeated syndrome measurements are guaranteed to agree. This paper is an extended version of Dawson.
Resumo:
Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar to 330 K or an inverted hexagonal phase above similar to 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (similar to 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.
Resumo:
We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions are used to identify upper bounds for the correlation functions, which are applicable to any fermionic system and correspond to ideal particle number-difference squeezing.
Resumo:
In order to quantify quantum entanglement in two-impurity Kondo systems, we calculate the concurrence, negativity, and von Neumann entropy. The entanglement of the two Kondo impurities is shown to be determined by two competing many-body effects, namely the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, I. Due to the spin-rotational invariance of the ground state, the concurrence and negativity are uniquely determined by the spin-spin correlation between the impurities. It is found that there exists a critical minimum value of the antiferromagnetic correlation between the impurity spins which is necessary for entanglement of the two impurity spins. The critical value is discussed in relation with the unstable fixed point in the two-impurity Kondo problem. Specifically, at the fixed point there is no entanglement between the impurity spins. Entanglement will only be created [and quantum information processing (QIP) will only be possible] if the RKKY interaction exchange energy, I, is at least several times larger than the Kondo temperature, T-K. Quantitative criteria for QIP are given in terms of the impurity spin-spin correlation.
Resumo:
We investigate the use of nanocrystal quantum dots as a quantum bus element for preparing various quantum resources for use in photonic quantum technologies. Using the Stark-tuning property of nanocrystal quantum dots as well as the biexciton transition, we demonstrate a photonic controlled-NOT (CNOT) interaction between two logical photonic qubits comprising two cavity field modes each. We find the CNOT interaction to be a robust generator of photonic Bell states, even with relatively large biexciton losses. These results are discussed in light of the current state of the art of both microcavity fabrication and recent advances in nanocrystal quantum dot technology. Overall, we find that such a scheme should be feasible in the near future with appropriate refinements to both nanocrystal fabrication technology and microcavity design. Such a gate could serve as an active element in photonic-based quantum technologies.
Resumo:
An optical quantum memory scheme using two narrow-linewidth cavities and some optical fibers is proposed. The cavities are connected via an optical fiber, and the gap of each cavity can be adjusted to allow photons with a certain bandwidth to transmit through or reflect back. Hence, each cavity acts as a shutter and the photons can be stored in the optical fiber between the cavities at will. We investigate the feasibility of using this device in storing a single photon. We estimate that with current technology storage of a photon qubit for up to 50 clock cycles (round trips) could be achieved with a probability of success of 85%. We discuss how this figure could be improved.
Resumo:
We investigate decoherence effects in the recently suggested quantum-computation scheme using weak nonlinearities, strong probe coherent fields, detection, and feedforward methods. It is shown that in the weak-nonlinearity-based quantum gates, decoherence in nonlinear media can be made arbitrarily small simply by using arbitrarily strong probe fields, if photon-number-resolving detection is used. On the contrary, we find that homodyne detection with feedforward is not appropriate for this scheme because in this case decoherence rapidly increases as the probe field gets larger.
Resumo:
We report that high quality PbS nanocrystals, synthesized in the strong quantum confinement regime, have quantum yields as high as 70% at room temperature. We use a combination of modelling and photoluminescence up-conversion to show that we obtain a nearly monodisperse size distribution. Nevertheless, the emission displays a large nonresonant Stokes shift. The magnitude of the Stokes shift is found to be directly proportional to the degree of quantum confinement, from which we establish that the emission results from the recombination of one quantum confined charge carrier with one localized or surface-trapped charge carrier. Furthermore, the surface state energy is found to lie outside the bulk bandgap so that surface-related emission only commences for strongly quantum confined nanocrystals, thus highlighting a regime where improved surface passivation becomes necessary.