955 resultados para ATLANTIC FOREST OF BRAZIL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is now an extensive literature on extinction debt following deforestation. However, the potential for species credit in landscapes that have experienced a change from decreasing to expanding forest cover has received little attention. Both delayed responses should depend on current landscape forest cover and on species life-history traits, such as longevity, as short-lived species are likely to respond faster than long-lived species. We evaluated the effects of historical and present-day local forest cover on two vertebrate groups with different longevities understorey birds and non-flying small mammals - in forest patches at three Atlantic Forest landscapes. Our work investigated how the probability of extinction debt and species credit varies (i) amongst landscapes with different proportions of forest cover and distinct trajectories of forest cover change, and (ii) between taxa with different life spans. Our results suggest that the existence of extinction debt and species credit, as well as the potential for their future payment and/or receipt, is not only related to forest cover trajectory but also to the amount of remaining forest cover at the landscape scale. Moreover, differences in bird and small mammal life spans seem to be insufficient to affect differently their probability of showing time-delayed responses to landscape change. Synthesis and applications. Our work highlights the need for considering not only the trajectory of deforestation/regeneration but also the amount of forest cover at landscape scale when investigating time-delayed responses to landscape change. As many landscapes are experiencing a change from decreasing to expanding forest cover, understanding the association of extinction and immigration processes, as well as their interactions with the landscape dynamic, is a key factor to plan conservation and restoration actions in human-altered landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With fast growth rates and clonal reproduction, bamboos can rapidly invade forest areas, drastically changing their original structure. In the Brazilian Atlantic Forest, where recent mapping efforts have shown that woody bamboos dominate large areas, the present study assessed the differences in soil and vegetation between plots dominated (>90% of bamboo coverage) and not dominated (<10% of coverage) by the native Guadua tagoara. Surface soil was physically and chemically analyzed, and trees at three size classes (seedling, sapling, and adult) were counted, identified and measured. New inventories were conducted to assess recruitment, mortality, and damage rates. Bamboo plots had more fertile soils (higher bases saturation and lower potential acidity) due to the preferential occurrence of G. tagoara on more clayey soils. Bamboo-dominated plots had lower density of adult trees (diameter >5 cm) and lower species density. In addition, overall tree diameter distribution was very different between environments, with bamboo plots having greater concentration of small-sized trees. Such differences are probably related to the general tendency of higher mortality, recruitment, and damage rates in bamboo plots. Greater physical (wind and bamboo-induced damages) and physiological stress (heat and light) in bamboo plots are probable causes of bamboo-dominated plots being more dynamic. Finally, we discuss the differences between Atlantic and Amazonian Guadua-dominated forests, causes, and possible consequences of bamboo overabundance to the Atlantic Forest conservation. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brazilian Atlantic forest has been an excellent laboratory for investigations regarding tropical forest ecology and the fragility of tropical ecosystems in face of human disturbances. In this article, we present a synthesis about the spatial distribution of Atlantic forest biodiversity and forest response to human disturbances, as well as the ongoing conservation efforts based on a review of several investigations in this biota. In general, studies have documented an uneven distribution of biodiversity throughout the Atlantic forest region, revealing alarming rates of habitat loss at low altitudes, while protected areas concentrate at higher altitudes. It has been suggested that the remaining forest habitat is moving towards an early-successional systems across human-modified landscapes. Such regressive forest succession increases the threats for several animals and plant groups. Based on these findings, we propose seven guidelines in order to enhance the provision of ecosystem services and the conservation value of human-modified landscapes, reducing the species extinction risk in the Atlantic forest and in other irreplaceable tropical biotas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new genera and species of Pteronemobiini crickets (Grylloidea: Trigonidiidae: Nemobiinae) are described from southern Brazilian Atlantic Forest: Kevanemobius paulistorum gen. n. et sp. n., and Pepoyara jagoi gen. n. et sp. n. The position of these genera among other Pteronemobiini is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-diversity reforestation can help jumpstart tropical forest restoration, but obtaining viable seedlings is a major constraint: if nurseries do not offer them, it is hard to plant all the species one would like. From 2007 to 2009, we investigated five different seed acquisition strategies employed by a well-established tree nursery in southeastern Brazil, namely (1) in-house seed harvesters; (2) hiring a professional harvester; (3) amateur seed harvesters; or (4) a seed production cooperative, as well as (5) participating in a seed exchange program. In addition, we evaluated two strategies not dependent on seeds: harvesting seedlings from native tree species found regenerating under Eucalyptus plantations, and in a native forest remnant. A total of 344 native tree and shrub species were collected as seeds or seedlings, including 2,465 seed lots. Among these, a subset of 120 species was obtained through seed harvesting in each year. Overall, combining several strategies for obtaining planting stocks was an effective way to increase species richness, representation of some functional groups (dispersal syndromes, planting group, and shade tolerance), and genetic diversity of seedlings produced in forest tree nurseries. Such outcomes are greatly desirable to support high-diversity reforestation as part of tropical forest restoration. In addition, community-based seed harvesting strategies fostered greater socioeconomic integration of traditional communities in restoration projects and programs, which is an important bottleneck for the advance of ecological restoration, especially in developing countries. Finally, we discuss some of the limitations of the various strategies for obtaining planting stocks and the way forward for their improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic Forest is one of the most threatened tropical biomes, with much of the standing forest in small (less than 50 ha), disturbed and isolated patches. The pattern of land-use and land-cover change (LULCC) which has resulted in this critical scenario has not yet been fully investigated. Here, we describe the LULCC in three Atlantic Forest fragmented landscapes (Sao Paulo, Brazil) between 1960-1980s and 1980-2000s. The three studied landscapes differ in the current proportion of forest cover, having 10%, 30% and 50% respectively. Between the 1960s and 1980s. forest cover of two landscapes was reduced while the forest cover in the third landscape increased slightly. The opposite trend was observed between the 1980s and 2000s: forest regeneration was greater than deforestation at the landscapes with 10% and 50% of forest cover and, as a consequence, forest cover increased. By contrast, the percentage of forest cover at the landscape with 30% of forest cover was drastically reduced between the 1980s and 2000s. LULCC deviated from a random trajectory, were not constant through time in two study landscapes and were not constant across space in a given time period. This landscape dynamism in single locations over small temporal scales is a key factor to be considered in models of LULCC to accurately simulate future changes for the Atlantic Forest. In general, forest patches became more isolated when deforestation was greater than forest regeneration and became more connected when forest regeneration was greater than deforestation. As a result of the dynamic experienced by the study landscapes, individual forest patches currently consist of a mosaic of different forest age classes which is likely to impact bio-diversity. Furthermore, landscape dynamics suggests the beginning of a forest transition in some Atlantic Forest regions, what could be of great importance for biodiversity conservation due to the potential effects of young secondary forests in reducing forest isolation and maintaining a significant amount of the original biodiversity. (C) 2012 Elsevier B.V. All rights reserved.