958 resultados para ASTM A285 Gr C steel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique was developed for characterisation of stainless steel to intergramilar stress corrosion cracking by atomic force microscopy. The technique proved to be effective in sensitisation identification of AISI 304 stainless steel and might be promising in sensitisation identification of other stainless steels. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influences of the growing process of sulfate-reducing bacteria (SRB) in seawater system on the medium state and corrosion behavior of carbon steel were studied by detecting solution state parameters and using corrosion electrochemical methods. The growing process of SRB in the seawater shows the three stages of growing, death and residual phases. The solution state parameters of the concentration of sulfide, the pH value and the redox potential changed during the three stages of the SRB growing process. And the corrosion rate of D36 carbon steel was accelerated during the growing phase and stable during the death and residual phases. The results indicate that the medium state and the corrosion rate of the steel do not depend on the number of active SRB, but depend on the accumulation of the metabolism products of SRB. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three triazole derivatives (4-chloro-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (CATM), 4-methoxyl-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (MATM) and 4-fluoro-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (FATM)) have been synthesized as new inhibitors for the corrosion of mild steel in acid media. The inhibition efficiencies of these inhibitors were evaluated by means of weight loss and electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and polarization curves. Then the surface morphology was studied by scanning electron microscopy (SEM). The adsorption of triazole derivatives is found to obey Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The relationship between molecular structure of these compounds and their inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were computed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two triazole derivatives, 3,4-dichloro-acetophenone-O-1'-(1',3',4'-triazolyl)-methaneoxime (4-DTM) and 2,5-dichloro-acetophenone-O-1'-(1',3',4'-triazolyl)-methaneoxime (5-DTM) were synthesized, and the inhibition effects for mild steel in 1 M HCl solutions were investigated by weight loss measurements, electrochemical tests and scanning electronic microscopy (SEM). The weight loss measurements showed that these compounds have excellent inhibiting effect at a concentration of 1.0 x 10(-3) M. The potentiodynamic polarization experiment revealed that the triazole derivatives are inhibitors of mixed-type and electrochemical impedance spectroscopy (EIS) confirmed that changes in the impedance parameters (R-ct and C-dl) are due to surface adsorption. The inhibition efficiencies obtained from weight loss measurements and electrochemical tests were in good agreement. Adsorption followed the Langmuir isotherm with negative values of the free energy of adsorption Delta G(ads)(o). The thermodynamic parameters of adsorption were determined and are discussed. Results show that both 4-DTM and 5-DTM are good inhibitors for mild steel in acid media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purines and its derivatives, such as, guanine, adenine, 2,6-diaminopurine, 6-thioguanine and 2,6-dithiopurine, were investigated as corrosion inhibitors for mild steel in 1 M HCl solution by weight loss measurements, electrochemical tests and quantum chemical calculations. The polarization curves of mild steel in the hydrochloric acid solutions of the purines showed that both cathodic and anodic processes of steel corrosion were suppressed. The Nyquist plots of impedance expressed mainly as a depressed capacitive loop with different compounds and concentrations. For all these purines, the inhibition efficiency increased by increasing the inhibitor concentration, and the inhibition efficiency orders are 2,6-dithiopurine > 6-thioguanine > 2,6-diaminopurine > adenine > guanine with the highest inhibiting efficiency of 88.0% for 10(-3) M 2,6-dithiopurine. The optimized structures of purines, the Mulliken charges, molecular orbital densities and relevant parameters were calculated by quantum chemical calculations. The quantum chemical calculation results inferred that the adsorption belong to physical adsorption, which might arise from the pi stacking between the pi electron of the purines and the metal surface. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different one-dimensional nanostructured polyanilines were synthesized in sulfuric acid solutions by conventional polymerization, interfacial polymerization and direct mixed reaction, respectively. The products were characterized with SEM, UV-vis and FTIR and the anticorrosion performance of products on mild steel were studied using electrochemical measurement in 3.5% NaCl aqueous solution. Results showed that the polyaniline nanofibers synthesized by direct mixed reaction have uniform morphology with diameters of 60-100 nm and more excellent protective properties than conventional aggregated polyaniline. Comparative studies revealed that the nanostructure and morphology of polyaniline could influence its anticorrosion performance. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been found that microbial communities play a significant role in the corrosion process of steels exposed in aquatic and soil environments. Biomineralization influenced by microorganisms is believed to be responsible for the formation of corrosion products via complicated pathways of electron transfer between microbial cells and the metal. In this study, sulfide corrosion products were investigated for 316L stainless steel exposed to media with sulfate-reducing bacteria media for 7 weeks. The species of inorganic and organic sulfides in the passive film on the stainless steel were observed by epifluorescence microscope, environmental scanning electron microscope combined with energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The transformation from metal oxides to metal sulfides influenced by sulfate-reducing bacteria is emphasized in this paper. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen permeation of 16Mn steel under a cyclic wet-dry condition was investigated by Devanathan-Stachurski's electrolytic cell with a membrane covered on the exit side by a nickel layer and the weight loss was measured for each wet-dry cycle. The results show that hydrogen permeation current change with different atmospheric environment: distilled water, seawater, and seawater containing 100 ppm H2S. The results show that seawater can induce an increase in the hydrogen permeation current due to the hydrolyzation reaction. And after the increase, equilibrium is reached due to the equilibrium of hydrolyzation reaction effect and the block of the rust layer. On the other hand, H2S contamination also can induce an increase in the maximum hydrogen permeation current due to the hydrolyzation reaction. And H2S contamination delays the time that hydrogen permeation is detected because of the formation of the FeS(1-x) film. The FeS(1-x) film can block the absorption of hydrogen onto the specimen surface. The surface potential change and the pH change of the metal surface control the hydrogen permeation current. And a clear linear correlation exists between the quantities of hydrogen permeated through the 16Mn steel and the weight loss. Based on the linear correlation, we monitored the corrosion rate by monitoring the hydrogen permeation current by a sensor outside. Good coherences were shown between results in laboratory and outside.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was found that the corrosion rate of steel in the sea mud with sulfate-reducing bacteria (SRB) could be as high as 10 times of that in the sea mud without SRB. And the hydrogen permeation reaction would occur when metals were corroded. So it is necessary to investigate the effect of living SRB on hydrogen permeation in the sea mud. Cathodic potential was often added to metals in order to protect them. But hydrogen permeation could be affected by the cathodic potential. So it is also necessary to study the effect of cathodic potential on hydrogen permeation. In this paper, the hydrogen permeation actions of APT X56 steel in the sea mud with and without SRB at corrosion and cathodic potential were studied with an improved Devanathan-Stachurski's electrolytic cell. Experimental results showed that during the growth of SRB, the current density curve of hydrogen permeation was accordant with the growth curve of SRB. But the hydrogen permeation current density of APT X56 steel hardly changed in the sterilized sea mud. Compared with the hydrogen permeation current density of APT X56 steel in the sterilized sea mud, the hydrogen permeation of APT X56 steel in the sea mud could be accelerated by living SRB. Experimental results also showed that the hydrogen permeation current density increased rapidly when the cathodic potential was added to the three-electrode system of the cathodic cell, and then the hydrogen permeation current density could obtain a stable value slowly. So the cathodic potential added to the cathodic cell could accelerate hydrogen permeation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The landscape of late medieval Ireland, like most places in Europe, was characterized by intensified agricultural exploitation, the growth and founding of towns and cities and the construction of large stone edifices, such as castles and monasteries. None of these could have taken place without iron. Axes were needed for clearing woodland, ploughs for turning the soil, saws for wooden buildings and hammers and chisels for the stone ones, all of which could not realistically have been made from any other material. The many battles, waged with ever increasingly sophisticated weaponry, needed a steady supply of iron and steel. During the same period, the European iron industry itself underwent its most fundamental transformation since its inception; at the beginning of the period it was almost exclusively based on small furnaces producing solid blooms and by the turn of the seventeenth century it was largely based on liquid-iron production in blast-furnaces the size of a house. One of the great advantages of studying the archaeology of ironworking is that its main residue, slag, is often produced in copious amounts both during smelting and smithing, is virtually indestructible and has very little secondary use. This means that most sites where ironworking was carried out are readily recognizable as such by the occurrence of this slag. Moreover, visual examination can distinguish between various types of slag, which are often characteristic for the activity from which they derive. The ubiquity of ironworking in the period under study further means that we have large amounts of residues available for study, allowing us to distinguish patterns both inside assemblages and between sites. Disadvantages of the nature of the remains related to ironworking include the poor preservation of the installations used, especially the furnaces, which were often built out of clay and located above ground. Added to this are the many parameters contributing to the formation of the above-mentioned slag, making its composition difficult to connect to a certain technology or activity. Ironworking technology in late medieval Ireland has thus far not been studied in detail. Much of the archaeological literature on the subject is still tainted by the erroneous attribution of the main type of slag, bun-shaped cakes, to smelting activities. The large-scale infrastructure works of the first decade of the twenty-first century have led to an exponential increase in the amount of sites available for study. At the same time, much of the material related to metalworking recovered during these boom-years was subjected to specialist analysis. This has led to a near-complete overhaul of our knowledge of early ironworking in Ireland. Although many of these new insights are quickly seeping into the general literature, no concise overviews on the current understanding of the early Irish ironworking technology have been published to date. The above then presented a unique opportunity to apply these new insights to the extensive body of archaeological data we now possess. The resulting archaeological information was supplemented with, and compared to, that contained in the historical sources relating to Ireland for the same period. This added insights into aspects of the industry often difficult to grasp solely through the archaeological sources, such as the people involved and the trade in iron. Additionally, overviews on several other topics, such as a new distribution map of Irish iron ores and a first analysis of the information on iron smelting and smithing in late medieval western Europe, were compiled to allow this new knowledge on late medieval Irish ironworking to be put into a wider context. Contrary to current views, it appears that it is not smelting technology which differentiates Irish ironworking from the rest of Europe in the late medieval period, but its smithing technology and organisation. The Irish iron-smelting furnaces are generally of the slag-tapping variety, like their other European counterparts. Smithing, on the other hand, is carried out at ground-level until at least the sixteenth century in Ireland, whereas waist-level hearths become the norm further afield from the fourteenth century onwards. Ceramic tuyeres continue to be used as bellows protectors, whereas these are unknown elsewhere on the continent. Moreover, the lack of market centres at different times in late medieval Ireland, led to the appearance of isolated rural forges, a type of site unencountered in other European countries during that period. When these market centres are present, they appear to be the settings where bloom smithing is carried out. In summary, the research below not only offered us the opportunity to give late medieval ironworking the place it deserves in the broader knowledge of Ireland's past, but it also provided both a base for future research within the discipline, as well as a research model applicable to different time periods, geographical areas and, perhaps, different industries..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, Evernia prunastri, a lichen growing in its natural habitat in Morocco was analysed for the concentration of five heavy metals (Fe, Pb, Zn, Cu and Cr) from eleven sites between Kenitra and Mohammedia cities. The control site was Dar Essalam, an isolated area with low traffic density and dense vegetation. In the investigated areas, the concentration of heavy metals was correlated with vehicular traffic, industrial activity and urbanization. The total metal concentration was highest in Sidi Yahya, followed by Mohammedia and Bouznika. The coefficient of variation was higher for Pb and lower for Cu, Zn and Fe. The concentrations of most heavy metals in the thalli differed significantly between sites (p<0.01). Principal component analysis (PCA) revealed a significant correlation between heavy metal accumulation and atmospheric purity index. This study demonstrated also that the factors most strongly affecting the lichen flora were traffic density, the petroleum industry and paper factories in these areas. Overall, these results suggest that the index of atmospheric purity and assessment of heavy metals in lichen thalli are good indicators of the air quality at the studied sites.