391 resultados para AQUIFERS
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Natural, dissolved U-238-series radionuclides (U, Ra-226, Rn-222) and activity ratios (A.R.s: U-234/U-238; Ra-228/Ra-226) in Continental Intercalaire (Cl) groundwaters and limited samples from the overlying Complexe Terminal (CT) aquifers of Algeria and Tunisia are discussed alongside core measurements for U/Th (and K) in the contexts of radiological water quality, geochemical controls in the aquifer, and water residence times. A redox barrier is characterised downgradient in the Algerian Cl for which a trend of increasing U-234/U-238 A.R.s with decreasing U-contents due to recoil-dominated U-234 solution under reducing conditions allows residence time modelling similar to 500 ka for the highest enhanced A.R. = 3.17. Geochemical modelling therefore identifies waters towards the centre of the Grand Erg Oriental basin as palaeowaters in line with reported C-14 and Cl-36 ages. A similar U-234/U-238 trend is evidenced in a few of the Tunisian CI waters. The paleoage status of these waters is affirmed by both noble gas recharge temperatures and simple modelling of dissolved, radiogenic He-4-contents both for sampled Algerian and Tunisian CI and CT waters. For the regions studied these waters therefore should be regarded as "fossil" waters and treated effectively as a non-renewable resource. (C) 2014 The Authors. Published by Elsevier Ltd.
Resumo:
The Urucuia Aquifer System represents a strategic water source in western Bahia. Its baseflow is responsible for the flow rate of the main tributaries of São Francisco river left bank in the dry season, including the Rio Grande, its main tributary in Bahia state. This river has a hydrological regime heavily affected by groundwater and is located in a region with conflicts about water resources. The aquifers geology is constituted by neocretacious sandstones of Urucuia Group subdivided in Posse Formation and Serra das Araras Formation. The embasement is formed by neoproterozoic rocks of Bambuí Group. This work focuses on an important tool application, the mathematical model, whose function is represent approximately and suitably the reality so that can assist in different scenarios simulations and make predictions. Many studies developed in this basin provided the conceptual model basis including a full free aquifer, lithological and hydraulical homogeneity in entire basin, null flux at plateau borders and aquifer base. The finite element method is the numerical method used and FEFLOW the computational algorithm. The simulated area was discretized in a single layer with 27.357,6 km² (314.432 elements and 320.452 nodes) totaling a 4.249,89 km³ volume. Were utilized 21 observation wells from CERB to calibrate the model. The terrain topography was obtained by SRTM data and the impermeable base was generated by interpolation of descriptive profiles from wells and electric vertical drilling from previous studies. Works in this area obtained mean recharge rates varying approximately from 20% to 25% of average precipitation, thus the values of model recharge zones varying in this range. Were distributed 4 hydraulic conductivity zones: (K1) west zone with K=6x10-5 m/s; (K2) center-east zone with K=3x10-4 m/s; (K3) far east zone with K=5x10-4 m/s; e (K4) east-north zone with K=1x10-5 m/s. Thereby was incorporated to the final conceptual model...
Resumo:
The growing interest in the use of groundwater resources is directly related to the economic advantages that the groundwater exploitation offers when compared to surface waters. This happens especially in large urban centers, such as the city of Americana / SP, where the rivers are increasingly contaminated by household and industrial waste. Therefore, this study aimed to characterize the Tubarão Aquifer System, in the city of Americana, to identify and evaluate the spatial distribution of different hydrogeochemical facies as well as understand the rock-fluid interaction through the construction of a conceptual hydrogeochemical model. This study was made based on the recognition of the possible chemical reactions that print the chemical characteristics of groundwater in the area. To do the job, there were two water sampling campaigns of all deep wells used by the City of Americana public water supply. From the results of hydrochemical, classification of water was made by Piper and Stiff diagrams as well as geostatistical data using cluster analysis of principal components. Based on information from the profiles obtained from the survey SIAGAS as well as in geological profiles provided by the city of Americana, we sought to detail the subsurface geology of the Subgroup Itararé in the city of Americana. The results obtained allowed the identification of three hydrochemical types in the study area: Bicarbonated calcium-sodium (1), bicarbonate sodium (2) and sodium chloride (3). The waters have bicarbonate alkaline pH to alkaline and can be considered weakly saline, with electrical conductivity values of around 161 mS / cm. Samples classified as sodium bicarbonate average of 174.99 mS / cm. The pH values ranging from 6.74 to 7.99, averaging 7.52. For the group of waters classified as sodium chloride, conductivity average is 164.32 mS / cm and pH values ranging... (Complete abstract click electronic access below)
Resumo:
Concerns about the quality of groundwater have been continuously rising, considering its importance for the public water supply in the State of São Paulo, and even more due to the impact that anthropic action has been causing to the original quality of that natural resource. It is extremely relevant to identify the contamination focuses along the aquifers of the State of São Paulo. This report aims to evaluate nitrates and fluorides concentrations along the aquifers present in the state, in order to identify places where change in the quality of groundwater is observed, through the comparison between measured concentrations and reference values, such as: “Intervention Value” (maximum allowed value) and “Alert Value” (attention required value). To perform this research, a full compilation and organization has been done on chemical analysis data from the “Sistema de Informações de Águas Subterrâneas - SIDAS”, made available by the “Divisão de Procedimentos de Outorga – DPO” of the “Departamento de Água e Energia Elétrica – DAEE”. This work has made possible the build-up of a database composed by 6,860 wells, with analytical data ready to be interpreted, containing information about water pH, electrical conductivity, hardness and chloride, iron, fluoride, nitrogen, nitrates and total dissolved solids concentrations. This database shows concentration data for nitrates (6,157 wells) and fluoride (3,316 wells). From this information, maps for nitrates and fluorides concentration distributions have been made, by each aquifer and each “Unidade de Gerenciamento de Recursos Hídricos – UGRHI”, which has enabled the identification of wells where the concentrations of these chemical compounds exceeds the reference values. Concerning nitrates, these analysis indicated the existence of contamination sources from rural and urban zones, mostly present in the west region... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
High fuel consumption and its inadequate control in fuel stations caused the pollution of soil and aquifers. These consequences created more concern with the increased exploration of aquifers to supply the groundwater demand. The objective of this study was to evaluate the eficiency and efectiveness of the of pump and treat technique of the water applied to the Coastal Aquifer in the cleaning up of the plumes produced by the leaking of fuel in the gas station Auto Posto Baía do Sol Ltda. The gas station is located in São Sebastião, in the north coast of São Paulo State. In the case of Auto Posto Baía do Sol Ltda., the technique of pump and treat was eficient and the plume produced by the leakage was completely removed. However, the efectiveness of this technique was low due to the long time required for the complete operation.
Resumo:
Radiogenic He-4 is produced by the decay of uranium and thorium in the Earths mantle and crust. From here, it is degassed to the atmosphere(1-5) and eventually escapes to space(1,5,6). Assuming that all of the He-4 produced is degassed, about 70% of the total He-4 degassed from Earth comes from the continental crust(2,-5,7). However, the outgoing flux of crustal He-4 has not been directly measured at the Earths surface(2) and the migration pathways are poorly understood(2-4,7,8). Here we present measurements of helium isotopes and the long-lived cosmogenic radio-isotope Kr-81 in the deep, continental-scale Guarani aquifer in Brazil and show that crustal He-4 reaches the atmosphere primarily by the surficial discharge of deep groundwater. We estimate that He-4 in Guarani groundwater discharge accounts for about 20% of the assumed global flux from continental crust, and that other large aquifers may account for about 33%. Old groundwater ages suggest that He-4 in the Guarani aquifer accumulates over half- to one-million-year timescales. We conclude that He-4 degassing from the continents is regulated by groundwater discharge, rather than episodic tectonic events, and suggest that the assumed steady state between crustal production and degassing of He-4, and its resulting atmospheric residence time, should be re-examined.
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The geophysical methods may be employed in aquifer system studies, as determination of groundwater level, soil/rock contact, beyond estimative of the aquifer thickness horizon. The geoeletric methods are particularly relevant in evaluations of the oilfields systems, due to directs relations between porosity and electrical resistivity, which allow inferences about oil and gas production. The indirect estimative of the productions in free aquifers system is something complex before of the diverse variables responsible for factors or physical phenomena, as clays minerals, which conditioned the physical parameters by electric geophysical methods. This paper present analyzed correlation among electrical resistivity, chargeability and direct measure flow in shallow wells, for determination of statistical relationships between parameters and evaluation of the geological constraints evolved. The study count with the 23 shallow wells located in free aquifer, constituted by alteration materials of the granites localized in Caçapava do Sul (RS). The geophysical data are acquired by vertical electric sounding in Schlumberger array. The correlations between electrical resistivity and flow, chargeability and flow, thickness of the soil/saprolite and flow indicated relationships between physical and hydrogeologic parameters, with variations conditioned by factors as porosity, permeability, besides intrinsic geological heterogeneities such soil variable thickness and rock fragments with several alteration degrees.
Resumo:
The numeric simulation is an important tool applied in understanding the dynamics of groundwater flow. In a hydrogeological model the processes responsible for groundwater flow are described by numerical formulations that allow the simplification, representation and understanding of the dynamics of the Aquifer System. In this work, a steady state groundwater flow simulation of Urucuia Aquifer System (UAS) part of the Corrente river basin was conducted, using the finite element method through software FEFLOW, to understand the dynamics of groundwater flow and quantify the hydrologic balance. The aquifer system Urucuia lodges in the São Francisco hydrogeological province and corresponds to a set of interconnected aquifers that occur in rocks from Urucuia group in the Urucuia sub-basin described by Campos e Dardenne (1997). The system is a porous media one, in a shape of a thick table mountain, consisting essentially of sandstones. The Corrente river basin is located in UAS in Western State of Bahia and it's one of the main units to maintaining permanent flow (Q95) and average natural flow of the São Francisco river. The simulation performed in this work obtained the following results for the modelled region: horizontal hydraulic conductivity of 3 x 10-4 m/s and vertical one 6 x 10-5 m/s; maximum recharge of 345 mm and minimum of 85 mm/a. It was concluded that: (1) regional groundwater flow has eastbound; with an exception of the extreme northeast portion, where the flow has opposite direction; (2) there are smaller water side dividers with an approximate direction EW, that guide the flow of water to the drainage that cut the aquifer; and (3) the UAS at Corrente river basin can be understood as a free regional aquifer system, isotropic and homogeneous. Regionally, the small lithological variations present in the Urucuia group can be neglected and do not exhibit significant influences on the dynamics of ground water flow
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa, area. Since 1992, the U.S. Geological Survey, in cooperation with the City of Cedar Rapids, has investigated the hydrogeology and water quality of the Cedar River alluvial aquifer. This report describes a detailed analysis of the ground-water flow system in the alluvial aquifer, particularly near well field areas. The ground-water flow system in the Cedar Rapids area consists of two main components, the unconsolidated Quaternary deposits and the underlying carbonate bedrock that has a variable fracture density. Quaternary deposits consist of eolian sand, loess, alluvium, and glacial till. Devonian and Silurian bedrock aquifers overlie the Maquoketa Shale (Formation) of Ordovician age, a regional confining unit. Ground-water and surface-water data were collected during the study to better define the hydrogeology of the Cedar River alluvial aquifer and Devonian and Silurian aquifers. Stream stage and discharge, ground-water levels, and estimates of aquifer hydraulic properties were used to develop a conceptual ground-water flow model and to construct and calibrate a model of the flow system. This model was used to quantify the movement of water between the various components of the alluvial aquifer flow system and provide an improved understanding of the hydrology of the alluvial aquifer.